Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
- Просмотров за год: 16.
-
Система Эйнштейна−Эренфеста типа (0, M) и асимптотические решения многомерного нелинейного уравнения Фоккера−Планка−Колмогорова
Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 151-160Просмотров за год: 2.Рассмотрен формализм квазиклассического приближения относительно малого коэффициента диффузии D, D→0, для многомерного уравнения Фоккера−Планка−Колмогорова с нелокальным и нелинейным вектором сноса в классе траекторно-сосредоточенных функций. Получена динамическая система Эйнштейна−Эренфеста типа (0, M), описывающая движение точки, в окрестности которой локализованы квазиклассические асимптотические решения. Построено семейство квазиклассических асимптотик с точностью O(D(M+1)/2).
-
Прямые мультипликативные методы для разреженных матриц. Квадратичное программирование
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 407-420Просмотров за год: 32.Рассматривается численно устойчивый прямой мультипликативный метод решения систем линейных уравнений, учитывающий разреженность матриц, представленных в упакованном виде. Преимущество метода состоит в расчете факторов Холесского для положительно определенной матрицы системы уравнений и ее решения в рамках одной процедуры, а также в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных. Решение системы линейных уравнений прямым мультипликативным алгоритмом — это, как и решение с помощью LU-разложения, просто другая схема реализации метода исключения Гаусса.
Расчет факторов Холесского для положительно определенной матрицы системы и ее решение лежит в основе построения новой математической формулировки безусловной задачи квадратичного программирования и новой формы задания необходимых и достаточных условий оптимальности, которые достаточно просты и в данной работе используются для построения новой математической формулировки задачи квадратичного программирования на многогранном множестве ограничений, которая представляет собой задачу поиска минимального расстояния между началом координат и точкой границы многогранного множества ограничений средствами линейной алгебры и многомерной геометрии.
Для определения расстояния предлагается применить известный точный метод, основанный на решении систем линейных уравнений, размерность которых не выше числа переменных целевой функции. Расстояния определяются построением перпендикуляров к граням многогранника различной размерности. Для уменьшения числа исследуемых граней предлагаемый метод предусматривает специальный порядок перебора граней. Исследованию подлежат только грани, содержащие вершину, ближайшую к точке безусловного экстремума, и видимые из этой точки. В случае наличия нескольких ближайших равноудаленных вершин исследуется грань, содержащая все эти вершины, и грани меньшей размерности, имеющие с первой гранью не менее двух общих ближайших вершин.
-
Нахождение особых решений многомерных дифференциальных уравнений типа Клеро в частных производных с тригонометрическими функциями
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 33-42В работе изучается класс дифференциальных уравнений типа Клеро в частных производных первого порядка, которые представляют собой многомерное обобщение обыкновенного дифференциального уравнения Клеро на случай, когда искомая функция зависит от многих переменных. Известно, что общее решение дифференциального уравнения типа Клеро в частных производных представляет собой семейство интегральных (гипер-) плоскостей. Помимо общего решения, могут существовать частные решения, а в некоторых частных случаях удается найти особое (сингулярное) решение.
Целью работы является нахождение особых решений многомерных дифференциальных уравнений типа Клеро в частных производных первого порядка со специальной правой частью. В работе сформулирован критерий существования особого решения дифференциального уравнения типа Клеро в частных производных для случая, когда функция от производных представляет собой функцию от линейной комбинации частных производных. Получены сингулярные решения для данного типа дифференциальных уравнений с тригонометрическими функциями от линейной комбинации $n$-независимых переменных с произвольными коэффициентами. Показано, что задача нахождения особого решения сводится к решению системы трансцендентных уравнений, содержащих исходные тригонометрические функции. В статье описана процедура нахождения сингулярного решения уравнения типа Клеро, основная идея которой заключается в нахождении не частных производных искомой функции, как функций независимых переменных, а линейных комбинаций частных производных с некоторыми коэффициентами. Данный метод может быть применен для нахождения особых решений уравнений типа Клеро, для которых данная структура сохраняется.
Работа организована следующим образом. Введение содержит краткий обзор некоторых современных результатов, имеющих отношение к теме исследования уравнений типа Клеро. Вторая часть является основной, в ней сформулирована задача работы и описан метод поиска сингулярных решений дифференциальных уравнениях типа Клеро в частных производных со специальной правой частью. Основным результатом работы является нахождение сингулярных решений уравнений, содержащих тригонометрические функции, приведенные в основной части работы в качестве примеров, иллюстрирующих описанный ранее метод. В заключении сформулированы результаты работы и обсуждается направление дальнейших исследований.
-
Релаксационная модель вязкого теплопроводного газа
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 23-43Представлена гиперболическая модель вязкого теплопроводного газа, в которой для гиперболизации уравнений использован подход Максвелла–Каттанео, обеспечивающий распространение волн с конечными скоростями. В модифицированной модели вместо оригинальных законов Стокса и Фурье использовались их релаксационные аналоги и показано, что при стремлении времен релаксации $\tau_\sigma^{}$ и $\tau_w^{}$ к нулю гиперболизированные уравнения приводятся к классической системе Навье–Стокса негиперболического типа с бесконечными скоростями перемещения вязких и тепловых волн. Отмечено, что рассматриваемая в работе гиперболизированная система уравнений движения вязкого теплопроводного газа инвариантна не только по отношению к преобразованиям Галилея, но и к повороту, поскольку при дифференцировании по времени компонентов тензора вязких напряжений использована производная Яуманна. Для интегрирования уравнений модели применены гибридный метод Годунова (ГМГ) и многомерный узловой метод характеристик. ГМГ предназначен для интегрирования гиперболических систем, в которых имеются как уравнения, записанные в дивергентном виде, так и уравнения, не приводящиеся к таковому (оригинальный метод Годунова применяется только для систем уравнений, представленных в дивергентной форме). При вычислении потоковых переменных на гранях смежных ячеек использован линеаризованный римановский решатель. Для дивергентных уравнений применена конечно-объемная, а для недивергентных — конечноразностная аппроксимация. Для расчета ряда задач в работе также использовался неконсервативный многомерный узловой метод характеристик, который базируется на расщеплении исходной системы уравнений на ряд одномерных подсистем, для решения которых использован одномерный узловой метод характеристик. С помощью описанных численных методов решен ряд модельных одномерных задач о распаде произвольного разрыва, а также рассчитано двумерное течение вязкого газа при взаимодействии ударного скачка с прямоугольной ступенькой, непроницаемой для газа.
-
Обучение и оценка обобщающей способности методов интерполяции
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1023-1031В данной статье исследуются методы машинного обучения с определенным видом решающего правила. К ним относятся интерполяция по методу обратно взвешенных расстояний, метод интерполяции радиальными базисными функциями, метод многомерной интерполяции и аппроксимации на основе теории случайных функций, кригинг. Показано, что для данных методов существует способ быстрого переобучения «модели» при добавлении новых данных к существующим. Под «моделью» понимается построенная по обучающим данным интерполирующая или аппроксимирующая функция. Данный подход позволяет уменьшить вычислительную сложность построения обновленной «модели» с $O(n^3)$ до $O(n^2)$. Также будет исследована возможность быстрого оценивания обобщающих возможностей «модели» на обучающей выборке при помощи метода скользящего контроля leave-one-out cross-validation, устранив главный недостаток такого подхода — необходимость построения новой «модели» при каждом удалении элемента из обучающей выборки.
Ключевые слова: машинное обучение, интерполяция, случайная функция, система линейных уравнений, кросс-валидация.Просмотров за год: 7. Цитирований: 5 (РИНЦ). -
Сокращение вида решающего правила метода многомерной интерполяции и аппроксимации в задаче классификации данных
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 475-484Просмотров за год: 5.В данной статье исследуется метод машинного обучения на основе теории случайных функций. Одной из основных проблем данного метода является то, что вид решающего правила модели метода, построенной на данных обучающей выборки, становится более громоздким при увеличении количества примеров выборки. Решающее правило модели является наиболее вероятной реализацией случайной функции и представляется в виде многочлена с количеством слагаемых, равным количеству обучающих элементов выборки. В статье будет показано, что для рассматриваемого метода существует быстрый способ сокращения обучающей выборки и, соответственно, вида решающего правила. Уменьшение примеров обучающей выборки происходит за счет поиска и удаления малоинформативных (слабых) элементов, которые незначительно влияют на итоговый вид решающей функции, и шумовых элементов выборки. Для каждого $(x_i,y_i)$-го элемента выборки было введено понятие значимости, выражающееся величиной отклонения оцененного значения решающей функции модели в точке $x_i$, построенной без $i$-го элемента, от реального значения $y_i$. Будет показана возможность косвенного использования найденных слабых элементов выборки при обучении модели метода, что позволяет не увеличивать количество слагаемых в полученной решающей функции. Также в статье будут описаны проведенные эксперименты, в которых показано, как изменение количества обучающих данных влияет на обобщающую способность решающего правила модели в задаче классификации.
-
Многомерный узловой метод характеристик для гиперболических систем
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 19-32Предложен многомерный узловой метод характеристик, предназначенный для интегрирования гиперболических систем, базирующийся на расщеплении исходной системы уравнений на ряд одномерных подсистем, для расчета которых использован одномерный узловой метод характеристик. Приведены расчетные формулы, детально описана методика вычислений применительно к односкоростной модели гетерогенной среды при наличии сил гравитации. Представленный метод применим и к другим гиперболическим системам уравнений. С помощью этого явного, неконсервативного, первого порядка точности метода рассчитан ряд тестовых задач и показано, что в рамках предлагаемого подхода за счет привлечения дополнительных точек в шаблон схемы возможно проведение вычислений с числами Куранта, превышающими единицу. Так, в расчете обтекания трехмерной ступеньки потоком гетерогенной смеси число Куранта равнялось 1.2. В случае применения метода Годунова при решении этой же задачи макси- мальное число Куранта, при котором возможен устойчивый счет, имеет значение 0.13 × 10−2. Еще одна особенность многомерного метода характеристик связана со слабой зависимостью временного шага от размерности задачи, что существенно расширяет возможности этого подхода. С использованием этого метода рассчитан ряд задач, которые ранее считались «тяжелыми» для таких численных методов, как методы Годунова, Куранта – Изаксона – Рис, что связано с тем, что в нем наиболее полно использованы преимущества характеристического представления интегрируемой системы уравнений.
-
Разностный метод решения уравнения конвекции–диффузии с неклассическим граничным условием в многомерной области
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 559-579В работе изучается многомерное уравнение конвекции-диффузии с переменными коэффициентами и неклассическим граничным условием. Рассмотрены два случая: в первом случае первое граничное условие содержит интеграл от неизвестной функции по переменной интегрирования $x_\alpha^{}$, а во втором случае — интеграл от неизвестной функции по переменной интегрирования $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении переноса примеси вдоль русла рек. Для приближенного решения поставленной задачи предложена эффективная в плане экономичности, устойчивости и сходимости разностная схема — локально-одномерная разностная схема А.А. Самарского с порядком аппроксимации~$O(h^2+\tau)$. Ввиду того что уравнение содержит первую производную от неизвестной функции по пространственной переменной $x_\alpha^{}$, для повышения порядка точности локально-одномерной схемы используется известный метод, предложенный А.А. Самарским при построении монотонной схемы второго порядка точности по $h_\alpha^{}$ для уравнения параболического типа общего вида, содержащего односторонние производные, учитывающие знак $r_\alpha^{}(x,\,t)$. Для повышения до второго порядка точности по $h_\alpha^{}$ краевых условий третьего рода воспользовались уравнением в предположении, что оно справедливо и на границах. Исследование единственности и устойчивости решения проводилось с помощью метода энергетических неравенств. Получены априорные оценки решения разностной задачи в $L_2^{}$-норме, откуда следуют единственность решения, непрерывная и равномерная зависимость решения разностной задачи от входных данных, а также сходимость решения локально-одномерной разностной схемы к решению исходной дифференциальной задачи в $L_2^{}$-норме со скоростью, равной порядку аппроксимации разностной схемы. Для двумерной задачи построен алгоритм численного решения, проведены численные расчеты тестовых примеров, иллюстрирующие полученные в работе теоретические результаты.
-
Об одной модификации узлового метода характеристик
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 29-44Представлен вариант обратного метода характеристик (МОМХ), в алгоритм которого введен дополнительный дробный временной шаг, что позволяет повысить точность вычислений за счет более точной аппроксимации характеристик. Приведены расчетные формулы модифицированного метода для уравнений односкоростной модели газожидкостной смеси, с помощью которого рассчитаны одномерные, а также плоские тестовые задачи, имеющие автомодельные решения. При решении многомерных задач исходная система уравнений расщепляется на ряд одномерных подсистем, для расчета которых применяется обратный метод характеристик с дробным временным шагом. С использованием предложенного метода рассчитаны: одномерная задача распада произвольного разрыва в дисперсной среде; двумерная задача взаимодействия однородного газожидкостного потока с препятствием с присоединенным ударным скачком, а также течение с центрированной волной разрежения. Результаты численных расчетов этих задач сопоставлены с автомодельными решениями и отмечено их удовлетворительное совпадение. На примере задачи Римана с ударным скачком приведено сравнение с рядом консервативных, неконсервативных первого и повышенного порядков точности схем, из которого, в частности, следует, что представленный метод расчета вполне конкурентоспособен. Несмотря на то что применение МОМХ требует в разы больших временных затрат по сравнению с оригинальным обратным методом характеристик (ОМХ), вычисления можно проводить с увеличенным временным шагом и в ряде случаев получать более точные результаты. Отмечено, что метод с дробным временным шагом имеет преимущества в случаях, когда характеристики системы криволинейные. По этой причине для уравнений Эйлера целесообразно использовать ОМХ вместо МОМХ, поскольку в этом случае характеристики в пределах временного шага мало отличаются от прямых линий.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"