Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Исследование интегральных характеристик перекрестков при помощи микроскопических моделей транспортных потоков
Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 523-534Просмотров за год: 4. Цитирований: 7 (РИНЦ).Рассматривается проблема применимости микроскопического моделирования транспортных потоков к анализу достаточно больших фрагментов сетей на примере модели дискретного потока с безопасной дистанцией. Вводится понятие интегральных характеристик перекрестков и предлагается методика получения интегральных характеристик на основе данных численных экспериментов по моделированию потоков на заданном перекрестке. Методика применяется к кольцевому коммутатору с Т-образными перекрестками, анализируются полученные характеристики.
-
Обнаружение медленно движущихся или неожиданно возникающих неподвижных «бутылочных горлышек» в транспортномпо токе на основе теории трех фаз
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 319-363Разработан метод обнаружения неожиданно возникающих «бутылочных горлышек», которые появляются в транспортном потоке внезапно и неожиданно для водителей. Такие неожиданно возникающие бутылочные горлышки могут двигаться, если они вызваны медленно движущейся автомашиной (тип МВ), или же оставаться неподвижными, если они вызваны внезапно остановившейся автомашиной (тип SV), например, в результате аварии. На основе численного моделирования стохастической микроскопической модели транспортного потока в рамках теории трех фаз Кернера показано, что даже при использовании небольшого процента «зондирующих» (измеряющих) автомашин (FCD), случайным образом распределенных в транспортном потоке, возможно надежное обнаружение неожиданно возникающих бутылочных горлышек. Найдено, что временная зависимость вероятности прогноза бутылочных горлышек типа МВ или SV, а также точность определения их положения существенно зависят от последовательности фазовых переходов от свободного (F) к синхронизованному (S) транспортному потоку (F→S-переход) и обратных фазовых переходов (S→F-переход), а также от колебаний скорости автомашин в синхронизованном потоке вблизи бутылочного горлышка. Предлагаемая численная методика позволяет как обнаруживать неожиданно возникшее бутылочное горлышко на автомагистрали, так и различать, связано ли такое бутылочное горлышко с медленно движущейся автомашиной (МВ) или же с внезапно остановившейся автомашиной (SV).
-
Адаптивное управление сигналами светофоров на основе обучения с подкреплением, инвариантное к конфигурации светофорного объекта
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1253-1269В работе представлен метод адаптивного управления сигналами светофоров, инвариантный к конфигурации светофорного объекта. Предложенный метод использует одну модель нейронной сети для управления светофорами различных конфигураций, отличающихся как по числу контролируемых полос движения, так и по используемому набору фаз. Для описания пространства состояний используется как динамическая информация о состоянии транспортного потока, так и статические данные о конфигурации контролируемого перекрестка. Для повышения скорости обучения модели предлагается использовать эксперта, предоставляющего дополнительные данные для обучения модели. В качестве эксперта используется метод адаптивного управления, основанный на максимизации взвешенного потока транспортных средств через перекресток. Экспериментальные исследования разработанного метода, проведенные в системе микроскопического моделирования движения транспортных средств, подтвердили его работоспособность и эффективность. Была показана возможность применения разработанного метода в сценарии моделирования, не используемом в процессе обучения. Представлено сравнение предложенного метода с другими известными решениями задачи управления светофорным объектом, в том числе с методом, используемым в качестве эксперта. В большинстве сценариев разработанный метод показал лучший результат по критериям среднего времени движения и среднего времени ожидания. Преимущество над методом, используемым в качестве эксперта, в зависимости от исследуемого сценария составило от 2% до 12% по критерию среднего времени ожидания транспортных средств и от 1% до 7% по критерию среднего времени движения.
-
Моделирование транспортных потоков на основе квазигазодинамического подхода и теории клеточных автоматов с использованием суперкомпьютеров
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 175-194Целью исследования являются моделирование динамики автотранспортных потоков на транспортных сетях мегаполисов и систематизация современного состояния дел в этой области. Во введении указывается, что на первый план выходит развитие интеллектуальных транспортных систем, которые становятся неотъемлемой частью современных транспортных технологий. Основным ядром таких систем являются адекватные математические модели, максимально приближенные к реальности. Отмечается, что в связи с большим объемом вычислений необходимо использование суперкомпьютеров, следовательно, создание специальных пар аллельных алгоритмов. В начале статьи приводится современная классификация моделей, обсуждаются отличительные особенности каждого класса со ссылками на соответствующие примеры. Далее основное внимание уделяется созданным авторами статьи разработкам в области как макроскопического, так и микроскопического моделирования и определению места этих разработок в приведенной выше классификации. Макроскопическая модель основана на приближении сплошной среды и использует идеологию квазигазодинамических систем уравнений. Указаны ее достоинства по сравнению с существующими моделями этого класса. Система уравнений модели представлена как в одномерном варианте, но с возможностью исследования многополосного движения, так и в двумерном варианте, с введением понятия боковой скорости, то есть скорости перестроения из полосы в полосу. Второй вариант позволяет проводить вычисления в расчетной области, соответствующей реальной геометрии дороги. Представлены тестовые расчеты движения по дороге с локальным расширением и по дороге с системой светофоров с различными светофорными режимами. Расчеты позволили в первом случае сделать интересные выводы о влиянии расширения на пропускную способность дороги в целом, а во втором случае — выбрать оптимальный режим для получения эффекта «зеленой волны». Микроскопическая модель основана на теории клеточных автоматов и однополосной модели Нагеля – Шрекенберга и обобщена авторами на случай многополосного движения. В модели реализованы различные поведенческие стратегии водителей. В качестве теста моделируется движение на реальном участке транспортной сети в центре г. Москвы. Причем для грамотного прохождения транспортных узлов сети в соответствии с правилами движения реализованы специальные алгоритмы, адаптированные для параллельных вычислений. Тестовые расчеты выполнены на суперкомпьютере К-100 ЦКП ИПМ им. М. В. Келдыша РАН.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"