Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
- Просмотров за год: 6.
-
О построении и свойствах WENO-схем пятого, седьмого, девятого, одиннадцатого и тринадцатого порядков. Часть 1. Построение и устойчивость
Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 721-753Просмотров за год: 9. Цитирований: 1 (РИНЦ).В настоящее время для численного моделирования начально-краевых задач для систем гиперболических уравнений в частных производных (например, уравнения газовой динамики, МГД, деформируемого твердого тела и т. д.) применяются различные нелинейные численные схемы пространственной аппроксимации. Это связано с необходимостью повышения порядка аппроксимации и расчета разрывных решений, часто возникающих в таких системах. Необходимость в нелинейных схемах связана с ограничением, следующим из теоремы С. К. Годунова о невозможности построения линейной схемы порядка больше первого для монотонной аппроксимации уравнений такого типа. Одними из наиболее точных нелинейных схем являются схемы типа ENO (существенно не осциллирующие схемы и их модификации), в том числе схемы WENO (взвешенные, существенно не осциллирующие схемы). Последние получили наибольшее распространение, поскольку при одинаковой ширине шаблона имеют более высокий порядок аппроксимации чем ENO-схемы. Плюсом ENO- и WENO-схем является сохранение высокого порядка аппроксимации на немонотонных участках решения. Исследование данных схем затруднительно в связи с тем, что сами схемы нелинейны и применяются для аппроксимации нелинейных уравнений. В частности, условие линейной устойчивости ранее было получено только для схемы WENO5 (пятого порядка аппроксимации на гладких решениях) и является приближенным. В настоящей работе рассматриваются вопросы построения и устойчивости схем WENO5, WENO7, WENO9, WENO11 и WENO13 для конечно-объемной схемы для уравнения Хопфа. В первой части статьи рассмотрены методы WENO в общем случае и приведены явные выражения для коэффициентов полиномов и весов линейных комбинаций, необходимых для построения схем. Доказывается ряд утверждений, позволяющих сделать выводы о порядках аппроксимации в зависимости от локального вида решения. Проводится анализ устойчивости на основе принципа замороженных коэффициентов. Рассматриваются случаи гладкого и разрывного поведения решения в области линеаризации при замороженных коэффициентах на гранях конечного объема и анализируется спектр схем для этих случаев. Доказываются условия линейной устойчивости для различных методов Рунге–Кутты при применении со схемами WENO. В результате приводятся рекомендации по выбору максимально возможного параметра устойчивости, которое наименьшим образом влияет на нелинейные свойства схем. Следуя полученным ограничениям, делается вывод о сходимости схем.
-
Свойства алгоритмов поиска оптимальных порогов для задач многозначной классификации
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1221-1238Модели многозначной классификации возникают в различных сферах современной жизни, что объясняется всё большим количеством информации, требующей оперативного анализа. Одним из математических методов решения этой задачи является модульный метод, на первом этапе которого для каждого класса строится некоторая ранжирующая функция, упорядочивающая некоторым образом все объекты, а на втором этапе для каждого класса выбирается оптимальное значение порога, объекты с одной стороны которого относят к текущему классу, а с другой — нет. Пороги подбираются так, чтобы максимизировать целевую метрику качества. Алгоритмы, свойства которых изучаются в настоящей статье, посвящены второму этапу модульного подхода — выбору оптимального вектора порогов. Этот этап становится нетривиальным в случае использования в качестве целевой метрики качества $F$-меры от средней точности и полноты, так как она не допускает независимую оптимизацию порога в каждом классе. В задачах экстремальной многозначной классификации число классов может достигать сотен тысяч, поэтому исходная оптимизационная задача сводится к задаче поиска неподвижной точки специальным образом введенного отображения $\boldsymbol V$, определенного на единичном квадрате на плоскости средней точности $P$ и полноты $R$. Используя это отображение, для оптимизации предлагаются два алгоритма: метод линеаризации $F$-меры и метод анализа области определения отображения $\boldsymbol V$. На наборах данных многозначной классификации разного размера и природы исследуются свойства алгоритмов, в частности зависимость погрешности от числа классов, от параметра $F$-меры и от внутренних параметров методов. Обнаружена особенность работы обоих алгоритмов для задач с областью определения отображения $\boldsymbol V$, содержащей протяженные линейные участки границ. В случае когда оптимальная точка расположена в окрестности этих участков, погрешности обоих методов не уменьшаются с увеличением количества классов. При этом метод линеаризации достаточно точно определяет аргумент оптимальной точки, а метод анализа области определения отображения $\boldsymbol V$ — полярный радиус.
-
Оценка собственных частот крутильных колебаний композиционного нелинейно вязкоупругого вала
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 421-430С целью обобщения уравнения крутильных колебаний на случай нелинейно деформируемых реологически активных валов в статье представлена методика линеаризации эффективной функции мгновенного деформирования материала. В работе рассматриваются слоистые и структурно неоднородные, в среднем изотропные валы из нелинейно вязкоупругих компонент. Методика заключается в определении аппроксимирующего модуля сдвига материала посредством минимизации среднеквадратического отклонения при приближении эффективной диаграммы мгновенного деформирования линейной функцией.
Представленная методика позволяет в аналитическом виде произвести оценку величин частот свободных колебаний слоистых и структурно неоднородных нелинейно вязкоупругих цилиндрических стержней. Это, в свою очередь, предоставляет возможность существенно сократить ресурсы при вибрационном анализе, а также отследить изменения значений собственных частот при изменении геометрических, физико-механических и структурных параметров валов, что особенно важно на начальных этапах моделирования и проектирования. Кроме того, в работе показано, что только выраженная нелинейность эффективного уравнения состояния материала оказывает значимое влияние на частоты свободных колебаний, и в некоторых случаях нелинейностью при определении собственных частот можно пренебречь.
В качестве уравнений состояния компонент композиционного материала в статье рассматриваются уравнения нелинейной наследственности с функциями мгновенного деформирования в виде билинейных диаграмм Прандтля. Для гомогенизации уравнений состояния слоистых цилиндрических стержней в работе применяются гипотезы Фойгта об однородности деформаций и Рейсса об однородности напряжений в объеме композиционного тела. При использовании данных предположений получены эффективные секущий и касательный модули сдвига, пределы пропорциональности, а также ядра ползучести и релаксации продольно, аксиально и поперечно-слоистых валов. Кроме того, в работе получены указанные эффективные характеристики структурно неоднородного, в среднем изотропного цилиндрического стержня с помощью ранее предложенного авторами метода гомогенизации, основанного на определении параметров деформирования материала по правилу смеси для уравнений состояния по Фойгту и Рейссу.
Ключевые слова: композиционный материал, гомогенизация, крутильные колебания, нелинейная вязкоупругость.Просмотров за год: 27. -
Оценка собственных частот колебаний чистого изгиба композиционных нелинейно-упругих балок и круглых пластин
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 945-953В работе представлена методика линеаризации диаграммы растяжения-сжатия материала нелинейно деформируемых балки и круглой пластины с целью обобщения уравнений свободных колебаний чистого изгиба. В статье рассматриваются композиционные, в среднем изотропные призматические балки постоянного прямоугольного поперечного сечения и круглые пластины постоянной толщины из нелинейно-упругих компонент. Методика заключается в определении аппроксимирующего модуля Юнга материала исходя из начального напряженно-деформированного состояния балки и пластины, подверженных действию изгибающего момента.
В статье предлагается два критерия линеаризации: равенство удельной потенциальной энергии деформации, а также минимизация среднеквадратического отклонения при приближении нелинейного уравнения состояния линейной функцией. Данный метод позволяет в аналитическом виде получить оценочное значение частоты свободных колебаний слоистых и структурно-неоднородных в среднем изотропных нелинейно-упругих балок и пластин, что предоставляет возможность существенно сократить ресурсы при вибрационном анализе и моделировании указанных элементов конструкций. Кроме того, в работе показано, что предложенные критерии линеаризации позволяют производить оценку величины собственных частот с одинаковой точностью.
Поскольку в общем случае даже изотропные материалы проявляют разную сопротивляемость растяжению и сжатию, в качестве кривых деформирования компонент композиционного материала в работе впервые рассматриваются кусочно-линейные диаграммы Прандтля с различающимися пределами пропорциональности и касательными модулями Юнга при растяжении и сжатии. В качестве параметров диа- граммы деформирования слоистых материалов рассматриваются эффективные характеристики по Фойгту при гипотезе об однородности деформаций (для продольно-слоистой структуры материла), по Рейссу при гипотезе об однородности напряжений (для поперечно-слоистой балки и аксиально-слоистой пластины). Кроме того, для структурно-неоднородного в среднем изотропного материала приведены эффективные модули Юнга и пределы пропорциональности, полученные с помощью ранее предложенного авторами метода гомогенизации. В качестве примера приведен расчет собственных частот колебаний двухфазных балок в зависимости от концентраций компонент их материала.
Ключевые слова: композиционный материал, нелинейная упругость, чистый изгиб, колебания, гомогенизация.Просмотров за год: 14. -
Методика расчета аэродинамических характеристик винтов вертолета на основе реберно-ориентированных схем в комплексе программ NOISEtte
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1097-1122В статье дается детальное описание численной методики моделирования турбулентного обтекания вращающихся винтов вертолета и расчета аэродинамических характеристик винта. В качестве базовой математической модели используется система осредненных по Рейнольдсу уравнений Навье – Стокса для вязкого сжимаемого газа, замкнутая моделью турбулентности Спаларта – Аллмараса. Итоговая модель формулируется в неинерциальной вращающейся системе координат, связанной с винтом. Для задания граничных условий на поверхности винта используются пристеночные функции.
Численное решение полученной системы дифференциальных уравнений проводится на гибридных неструктурированных сетках, включающих призматические слои вблизи поверхности обтекаемого тела. Численный метод строится на основе оригинальных вершинно-центрированных конечно-объемных EBR-схем. Особенностью этих схем является их повышенная точность, которая достигается за счет использования реберно-ориентированной реконструкции переменных на расширенных квазиодномерных шаблонах, и умеренная вычислительная стоимость, позволяющая проводить серийные расчеты. Для приближенного решения задачи о распаде разрыва используются методы Роу и Лакса – Фридрихса. Метод Роу корректируется в случае низкоскоростных течений. При моделировании разрывов или решений с большими градиентами используется квазиодномерная WENO-схема или локальное переключение на квазиодномерную TVD-реконструкцию. Интегрирование по времени проводится по неявной трехслойной схеме второго порядка аппроксимации с линеаризацией по Ньютону системы разностных уравнений. Для решения системы линейных уравнений используется стабилизированный метод сопряженных градиентов.
Численная методика реализована в составе исследовательского программного комплекса NOISEtte согласно двухуровневой MPI–OpenMP-модели, позволяющей с высокой эффективностью проводить расчеты на сетках, состоящих из сотен миллионов узлов, при одновременном задействовании сотен тысячп роцессорных ядер современных суперкомпьютеров.
На основе результатов численного моделирования вычисляются аэродинамические характеристики винта вертолета, а именно сила тяги, крутящий момент и их безразмерные коэффициенты.
Валидация разработанной методики проводится путем моделирования турбулентного обтекания двухлопастного винта Caradonna – Tung и четырехлопастного модельного винта КНИТУ-КАИ на режиме висения, рулевого винта в кольце, а также жесткого несущего винта в косом потоке. численные результаты сравниваются с имеющими экспериментальными данными.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"