Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
К вопросу об устойчивости численной схемы Патанкара
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 827-835Просмотров за год: 1.В статье рассматривается устойчивость эффективной численной схемы, предложенной С.В. Патанкаром. Численная схема Патанкара нашла широкое применение в решении разнообразных прикладных задач, поэтому вопросы, связанные с математическим обоснованием этой схемы, являются достаточно актуальными.
-
Неэкстенсивная статистика Тсаллиса системы контрактоворганизаций оборонно-промышленного комплекса
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1163-1183В работе проведен анализ системы контрактов, заключаемых организациями оборонно-промышленного комплекса России в процессе выполнения государственного оборонного заказа. Сделан вывод, что для описания данной системы может быть использована методология статистической механики. По аналогии с подходом, применяемым при рассмотрении большого канонического ансамбля Гиббса, изучаемый ансамбль сформирован в виде набора мгновенных «картинок», образованных из действующих в каждый момент времени неразличимых контрактов со своими стоимостями. Показано, что ограничения, накладываемые государством на процесс ценообразования, являются причиной того, что совокупность контрактов может быть отнесена к категории так называемых сложных систем, для описания которых используется неэкстенсивная статистика Тсаллиса. Это приводит к тому, что стоимостные распределения контрактов должны соответствовать деформированному распределению Бозе–Эйнштейна, полученному с использованием энтропии Тсаллиса. Данный вывод справедлив как для всей совокупности контрактов, заключаемых участниками выполнения государственного оборонного заказа, так и контрактов, заключаемых отдельной организацией в качестве исполнителя.
Для анализа степени соответствия эмпирических стоимостных распределений модифицированному распределению Бозе–Эйнштейна в настоящей работе использован метод сравнения соответствующих функций распределения вероятностей. В работе делается вывод о том, что для изучения стоимостных распределений контрактов отдельной организации в качестве анализируемых данных можно использовать сформировавшиеся за календарный год распределения выручки по отдельным заказам, соответствующим заключенным контрактам. Получены эмпирические функции распределения вероятностей ранжированных значений выручки от реализации по отдельным заказам АО «Концерн «ЦНИИ «Электроприбор», одной из ведущих приборостроительных организаций ОПК России, с 2007 по 2021 год. Наблюдается хорошее согласие между эмпирическими и теоретическими функциями распределений вероятностей, рассчитанными с использованием деформированных распределений Бозе–Эйнштейна в пределе «разряженного газа контрактов». Полученные на основе эмпирических данных значения параметров энтропийного индекса для каждого из изученных распределений выручки свидетельствуют о достаточно высокой степени неаддитивности, присущей изучаемой системе. Показано, что для оценки характеристических стоимостей распределений можно использовать величину среднего значения годовой выручки, рассчитанного с помощью нормированного эскортного распределения. Факт наилучшего согласия эмпирических и теоретических функций распределения вероятностей при нулевых значениях химического потенциала позволяет сделать предположение, что изучаемый «газ контрактов» можно сравнить с газом фотонов, в котором число частиц не является постоянным.
-
Аналоги условия относительной сильной выпуклости для относительно гладких задач и адаптивные методы градиентного типа
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 413-432Данная статья посвящена повышению скоростных гарантий численных методов градиентного типа для относительно гладких и относительно липшицевых задач минимизации в случае дополнительных предположений о некоторых аналогах сильной выпуклости целевой функции. Рассматриваются два класса задач: выпуклые задачи с условием относительного функционального роста, а также задачи (вообще говоря, невыпуклые) с аналогом условия градиентного доминирования Поляка – Лоясиевича относительно дивергенции Брэгмана. Для первого типа задач мы предлагаем две схемы рестартов методов градиентного типа и обосновываем теоретические оценки сходимости двух алгоритмов с адаптивно подбираемыми параметрами, соответствующими относительной гладкости или липшицевости целевой функции. Первый из этих алгоритмов проще в части критерия выхода из итерации, но для него близкие к оптимальным вычислительные гарантии обоснованы только на классе относительно липшицевых задач. Процедура рестартов другого алгоритма, в свою очередь, позволила получить более универсальные теоретические результаты. Доказана близкая к оптимальной оценка сложности на классе выпуклых относительно липшицевых задач с условием функционального роста, а для класса относительно гладких задач с условием функционального роста получены гарантии линейной скорости сходимости. На классе задач с предложенным аналогом условия градиентного доминирования относительно дивергенции Брэгмана были получены оценки качества выдаваемого решения с использованием адаптивно подбираемых параметров. Также мы приводим результаты некоторых вычислительных экспериментов, иллюстрирующих работу методов для второго исследуемого в настоящей статье подхода. В качестве примеров мы рассмотрели линейную обратную задачу Пуассона (минимизация дивергенции Кульбака – Лейблера), ее регуляризованный вариант, позволяющий гарантировать относительную сильную выпуклость целевой функции, а также некоторый пример относительно гладкой и относительно сильно выпуклой задачи. В частности, с помощью расчетов показано, что относительно сильно выпуклая функция может не удовлетворять введенному относительному варианту условия градиентного доминирования.
-
Неявный алгоритм решения уравнений движения несжимаемой жидкости
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1009-1023Для решения уравнений Навье – Стокса в случае несжимаемых течений разработано большое количество методов, наиболее популярными из которых являются методы с коррекцией скорости по алгоритму SIMPLE, аналогом которого является метод расщепления по физическим переменным. Данные методы, разработанные еще в прошлом веке, использовались для решения достаточно простых задач — расчета как стационарных течений, так и нестационарных, в которых границы расчетной области были неподвижны. В настоящее время задачи вычислительной гидродинамики существенно усложнились. Интерес представляют задачи с движением тел в расчетной области, движением контактных границ, кавитацией и задачи с динамической локальной адаптацией расчетной сетки. При этом расчетная сетка меняется, что приводит к нарушению условия дивергентности скорости на ней. Поскольку дивергентные скорости используются не только для уравнений Навье – Стокса, но и для всех остальных уравнений математической модели движения жидкости — моделей турбулентности, массопереноса и сохранения энергии, нарушение этого условия ведет к численным ошибкам и, зачастую, к расхождению вычислительного алгоритма.
В статье представлен неявный метод расщепления по физическим переменным, который использует дивергентные скорости с данного шага по времени для решения несжимаемых уравнений Навье – Стокса. Метод разработан для расчета течений при наличии подвижных и контактных границ, моделируемых в постановке Эйлера. Метод позволяет проводить расчеты с шагом интегрирования, на порядки превышающем явный шаг по времени (число Куранта – Фридрихcа – Леви $CFL\gg1$). В данной статье представлен вариант метода для несжимаемых течений. Вариант метода, позволяющий рассчитывать движение жидкости и газа при любых числах Маха, будет опубликован в ближайшее время. Метод для полностью сжимаемых течений реализован в программном комплексе FlowVision.
В статье приводятся результаты численного решения классической задачи обтекания кругового цилиндра при малых числах Рейнольдса ($50<Re<140$), при которых ламинарное обтекание цилиндра становиться нестационарным и образуется дорожка Кармана. Показано хорошее совпадение расчетов с экспериментальными данными, опубликованными в классических работах Ван-Дайка и Танеды.
-
Субградиентные методы для задач негладкой оптимизации с некоторой релаксацией условия острого минимума
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 473-495Задачи негладкой оптимизации нередко возникают во многих приложениях. Вопросы разработки эффективных вычислительных процедур для негладких задач в пространствах больших размерностей весьма актуальны. В таких случаях разумно применятьмет оды первого порядка (субградиентные методы), однако в достаточно общих ситуациях они приводят к невысоким скоростным гарантиям. Одним из подходов к этой проблеме может являться выделение подкласса негладких задач, допускающих относительно оптимистичные результаты о скорости сходимости в пространствах больших размерностей. К примеру, одним из вариантов дополнительных предположений может послужитьуслови е острого минимума, предложенное в конце 1960-х годов Б. Т. Поляком. В случае доступности информации о минимальном значении функции для липшицевых задач с острым минимумом известен субградиентный метод с шагом Б. Т. Поляка, который гарантирует линейную скорость сходимости по аргументу. Такой подход позволил покрыть ряд важных прикладных задач (например, задача проектирования точки на выпуклый компакт или задача отыскания общей точки системы выпуклых множеств). Однако как условие доступности минимального значения функции, так и само условие острого минимума выглядят довольно ограничительными. В этой связи в настоящей работе предлагается обобщенное условие острого минимума, аналогичное известному понятию неточного оракула. Предложенный подход позволяет расширить класс применимости субградиентных методов с шагом Б. Т. Поляка на ситуации неточной информации о значении минимума, а также неизвестной константы Липшица целевой функции. Более того, использование в теоретической оценке качества выдаваемого методом решения локальных аналогов глобальных характеристик целевой функции позволяет применять результаты такого типа и к более широким классам задач. Показана возможностьпр именения предложенного подхода к сильно выпуклым негладким задачам и выполнено экспериментальное сравнение с известным оптимальным субградиентным методом на таком классе задач. Более того, получены результаты о применимости предложенной методики для некоторых типов задач с релаксациями выпуклости: недавно предложенное понятие слабой $\beta$-квазивыпуклости и обычной квазивыпуклости. Исследовано обобщение описанной методики на ситуацию с предположением о доступности на итерациях $\delta$-субградиента целевой функции вместо обычного субградиента. Для одного из рассмотренных методов найдены условия, при которых на практике можно отказаться от проектирования итеративной последовательности на допустимое множество поставленной задачи.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"