Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Численное моделирование процесса срабатывания предохранительного клапана
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 495-509Просмотров за год: 34. Цитирований: 1 (РИНЦ).Рассматриваются вопросы построения математической модели процесса срабатывания пружинного предохранительного клапана прямого действия, в том числе и вопросыоб основания физически корректной величинына чального подъема диска при решении сопряженной задачи о движении диска в рабочем объеме клапана для газовых сред. Проводится обзор существующих подходов и методов решения данного типа задач. Приводятся постановка задачи о срабатывании клапана при повышении давления в резервуаре и математическая модель процесса срабатывания клапана. Особое внимание уделяется вопросам связывания физических подзадач. Описываются используемые методы, численные схемы и алгоритмы. Математическое моделирование проводится на основе фундаментальной системыдиф ференциальных уравнений движения вязкого сжимаемого газа, совместно с уравнением движения диска. В осесимметричной постановке решение рассматриваемой задачи строится численно с использованием метода конечных объемов. Сопоставляются результаты решения задачи о срабатывании предохранительного клапана, полученные с использованием вязкой модели и модели течения идеального газа. В невязкой постановке задача решается с использованием схемы Годунова, реализуемой в рамках авторского кода, а в вязкой постановке — на основе метода Курганова–Тадмора, реализуемого в рамках open source пакета OpenFOAM. Проводится сравнение результатов двух расчетов. В результате выполненных расчетов была получена зависимость высоты подъема диска от времени, которая сопоставляется с экспериментальными данными. Приводятся распределение давления газа по поверхности диска, а также профили скорости в поперечных сечениях зазора для различных высот подъема диска. Показывается, что величина начального подъема диска не влияет на характер течения газа и динамику подвижной части клапана, что может существенно сократить время расчета полного цикла работы клапана с момента его открытия до закрытия при понижении давления ниже установленного уровня. Для проверки адекватности и корректности используемых численных схем проводится моделирование процесса срабатывания клапана в рамках метода Годунова для невязкого газа. Полученные данные хорошо коррелируются между собой, что свидетельствует как о корректности сформулированной математической модели процесса срабатывания клапана, так и о возможности применения для описания динамики предохранительных клапанов модели невязкого газа.
-
Нейронечеткая модель формирования нечетких правил для оценки состояния объектов в условиях неопределенности
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 477-492Просмотров за год: 12.В данной статье решается задача построения нейронечеткой модели формирования нечетких правил и их использования для оценки состояния объектов в условиях неопределенности. Традиционные методы математической статистики или имитационного моделирования не позволяют строить адекватные модели объектов в указанных условиях. Поэтому в настоящее время решение многих задач основано на использовании технологий интеллектуального моделирования с применением методов нечеткой логики. Традиционный подход к построению нечетких систем связан с необходимостью привлечения эксперта для формулирования нечетких правил и задания используемых в них функций принадлежности. Для устранения этого недостатка актуальна автоматизация формирования нечетких правил на основе методов и алгоритмов машинного обучения. Одним из подходов к решению данной задачи является построение нечеткой нейронной сети и обучение ее на данных, характеризующих исследуемый объект. Реализация этого подхода потребовала выбора вида нечетких правил с учетом особенностей обрабатываемых данных. Кроме того, потребовалась разработка алгоритма логического вывода на правилах выбранного вида. Этапы алгоритма определяют число слоев в структуре нечеткой нейронной сети и их функциональность. Разработан алгоритм обучения нечеткой нейронной сети. После ее обучения производится формирование системы нечетко-продукционных правил. На базе разработанного математического обеспечения реализован программный комплекс. На его основе проведены исследования по оценке классифицирующей способности формируемых нечетких правил на примере анализа данных из UCI Machine Learning Repository. Результаты исследований показали, что классифицирующая способность сформированных нечетких правил не уступает по точности другим методам классификации. Кроме того, алгоритм логического вывода на нечетких правилах позволяет успешно производить классификацию при отсутствии части исходных данных. С целью апробации произведено формирование нечетких правил для решения задачи по оценке состояния водоводов в нефтяной отрасли. На основе исходных данных по 303 водоводам сформирована база из 342 нечетких правил. Их практическая апробация показала высокую эффективность в решении поставленной задачи.
-
Численное исследование интенсивных ударных волн в запыленных средах с однородной и двухкомпонентной несущей фазой
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 141-154Статья посвящена численному исследованию ударно-волновых течений в неоднородных средах — газовзвесях. В данной работе применяется двухскоростная двухтемпературная модель, в которой дисперсная компонента смеси имеет свою скорость и температуру. Для описания изменения концентрации дисперсной компоненты решается уравнение сохранения «средней плотности». В данном исследовании учитывались межфазное тепловое взаимодействие и межфазный обмен импульсом. Математическая модель позволяет описывать несущею фазу смеси как вязкую, сжимаемою и теплопроводную среду. Система уравнений решалась с помощью явного конечно-разностного метода Мак-Кормака второго порядка точности. Для получения монотонного численного решения к сеточной функции применялась схема нелинейной коррекции. В задаче ударно-волнового течения для составляющих скорости задавались однородные граничные условия Дирихле, для остальных искомых функций задавались граничные условия Неймана. В численных расчетах для того, чтобы выявить зависимость динамики всей смеси от свойств твердой компоненты, рассматривались различные параметры дисперсной фазы — объемное содержание, а также линейный размер дисперсных включений. Целью исследований было определить, каким образом свойства твердых включений влияют на параметры динамики несущей среды — газа. Исследовалось движение неоднородной среды в ударной трубе — канале, разделенном на две части; давление газа в одном из отсеков канала имело большее значение, чем в другом. В статье моделировались движение прямого скачка уплотнения из камеры высокого давления в камеру низкого давления, заполненную запыленной средой, последующее отражение ударной волны от твердой поверхности. Анализ численных расчетов показал, что уменьшение линейного размера частиц газовзвеси и увеличение физической плотности материала, из которого состоят частицы, приводят к формированию более интенсивной отраженной ударной волны с большей температурой и плотностью газа, а также меньшей скоростью движения отраженного возмущения и меньшей скоростью спутного потока газа в отраженной волне.
-
Моделирование процессов миграции загрязнений от свалки твердых бытовых отходов
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 369-385В статье представлены результаты исследования процессов миграции загрязнений от свалки твердых бытовых отходов (ТБО), расположенной в водоохранной зоне озера Селигер. Для изучения особенностей распространения загрязняющих веществ и определения миграционных параметров проведен комплекс полевых и лабораторных исследований в районе расположения свалки. Построена математическая модель, описывающая физико-химические процессы миграции веществ в почвогрунтовой толще. Процесс движения загрязняющих веществ обуславливается разнообразными факторами, оказывающими существенное влияние на миграцию ингредиентов ТБО, основными из которых являются: конвективный перенос, диффузия и сорбционные процессы, которые учтены в математической постановке задачи. Модифицированная математическая модель отличается от известных аналогов учетом ряда параметров, отражающих снижение концентрации ионов аммонийного и нитратного азота в грунтовых водах (транспирация корнями растений, разбавление инфильтрационными водами и т. д.). Представлено аналитическое решение по оценке распространения загрязнений от свалки ТБО. На основе математической модели построен комплекс имитационных моделей, который позволяет получить численное решение частных задач: вертикальной и горизонтальной миграции веществ в подземном потоке. В ходе выполнения численных экспериментов, получения аналитических решений, а также на основе данных полевых и лабораторных исследований изучена динамика распределения загрязнений в толще объекта исследования до озера. Сделан долгосрочный прогноз распространения загрязнений от свалки. В результате компьютерных и модельных экспериментов установлено, что при миграции загрязнений от свалки можно выделить ряд зон взаимодействия чистых грунтовых вод с загрязненными подземными водами, каждая из которой характеризуется различным содержанием загрязняющих веществ. Данные вычислительных экспериментов и аналитических расчетов согласуются с результатами полевых и лабораторных исследований объекта, что дает основание рекомендовать предлагаемые модели для прогнозирования миграции загрязнений от свалки ТБО. Анализ результатов моделирования миграции загрязнений позволяет обосновать численные оценки увеличения концентрации ионов $NH_4^+$ и $NO_3^-$ со временем функционирования свалки. Выявлено, что уже через 100 лет после начала существования свалки токсичные компоненты фильтрата заполнят все поровое пространство от свалки до озера, что приведет к существенному ухудшению экосистемы озера Селигер.
Ключевые слова: моделирование, миграция, фильтрация, сорбция, полигон твердых бытовых отходов (ТБО). -
Компьютерное моделирование процесса обработки почвы рабочими органами почвообрабатывающих машин
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 607-627В работе анализируются методы исследования процесса взаимодействия почвенных сред с рабочими органами почвообрабатывающих машин. Подробно рассмотрены математические методы численного моделирования, позволяющие преодолеть недостатки аналитических и эмпирических подходов. Приводятся классификация и обзор возможностей континуальных (FEM — метод конечных элементов, CFD — вычислительная гидродинамика) и дискретных (DEM — метод дискретных элементов, SPH — гидродинамика сглаженных частиц) численных методов. На основе метода дискретных элементов разработана математическая модель, представляющая почву, в виде множества взаимодействующих сферических элементов малых размеров. Рабочие поверхности почвообрабатывающего орудия в рамках конечноэлементного приближения представлены в виде совокупности элементарных треугольников. В модели рассчитывается движение элементов почвы под действием сил контакта элементов почвы друг с другом и с рабочими поверхностями орудия (упругие силы, силы сухого и вязкого трения). Это дает возможность оценивать влияние геометрических параметров рабочих органов, технологических параметров процесса и параметров почвы на геометрические показатели смещения почвы, показатели самоустановки орудия, силовые нагрузки, показатели качества рыхления и пространственное распределение показателей. Всего исследуются 22 показателя (или распределение показателя в пространстве). Возможности математической модели демонстрируются на примере комплексного исследования процесса обработки почвы дисковой культиваторной батареей. В компьютерном эксперименте использованы виртуальный почвенный канал размером 5×1.4 м и 3D-модель дисковой культиваторной батареи. Радиус почвенных частиц принимался равным 18 мм, скорость рабочего органа — 1 м/с, общее время моделирования — 5 с. Глубина обработки составляла 10 см при углах атаки 10, 15, 20, 25 и 30°. Проверка достоверности результатов моделирования производилась на лабораторной установке, для объемного динамометрирования, путем исследования натурного образца, выполненного в полном соответствии с исследованной 3D-моделью. Контроль осуществлялся по трем составляющим вектора тягового сопротивления: $F_x$, $F_y$ и $F_z$. Сравнение данных, полученных экспериментальным путем, с данными моделирования показало, что расхождение составляет не более 22.2 %, при этом во всех случаях максимальные значения наблюдались при углах атаки 30°. Хорошая согласуемость данных по трем ключевым силовым параметрам подтверждает достоверность всего комплекса исследованных показателей.
-
Релаксационные колебания и устойчивость тонких оболочек
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 807-820В работе изучаются возможности прогнозирования потери устойчивости тонких цилиндрических оболочек неразрушающими методами на стадии эксплуатации. Исследуются пологие оболочки, изготовленные из высокопрочных материалов. Для таких конструктивных решений характерны перемещения поверхностей, превосходящие толщины элементов. В рассматриваемых оболочках могут генерироваться релаксационные колебания значительной амплитуды даже при сравнительно невысоком уровне внутренних напряжений. Произведено упрощенное механико-математическое моделирование задачи о колебаниях цилиндрической оболочки, сводящее проблему к обыкновенному дифференциальному уравнению. При создании модели существенно использованы исследования многих авторов по изучению геометрии поверхности, образующейся после потери устойчивости. Нелинейное обыкновенное дифференциальное уравнение колеблющейся оболочки совпадает с хорошо изученным уравнением Дуффинга. Важно, что для тонких оболочек в уравнении Дуффинга появляется малый параметр перед второй производной по времени. Последнее обстоятельство дает возможность провести детальный анализ выведенного уравнения и описать релаксационные колебания — физическое явление, присущее только тонким высокопрочным оболочкам.
Показано, что гармонические колебания оболочки вокруг положения равновесия и устойчивые релаксационные колебания определяются точкой бифуркации решений уравнения Дуффинга. Эта точка является первой в схеме Фейгенбаума по преобразованию устойчивых периодических движений в динамический хаос. Произведены вычисления амплитуды и периода релаксационных колебаний в зависимости от физических свойств и уровня внутренних напряжений в оболочке. Рассмотрены два случая нагружения: сжатие вдоль образующих и внешнее давление.
Отмечено, что если внешние силы изменяются в течение времени по гармоническому закону, то периодическое колебание оболочки (нелинейный резонанс) состоит из отрезков медленного и скачкообразного движений. Этот факт, наряду со знанием амплитуды и частоты колеблющейся оболочки, позволяет предложить экспериментальную установку для прогноза потери устойчивости оболочки неразрушающим методом. В качестве критерия безопасности принято следующее требование: максимальные комбинации нагрузок не должны вызывать перемещения, превышающие заданные пределы. Получена формула, оценивающая запас устойчивости (коэффициент безопасности) конструкции по результатам экспериментальных измерений.
-
Компьютерное и физико-химическое моделирование эволюции фрактального коррозионного фронта
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 105-124Коррозионные повреждения металлов и сплавов — одна из основных проблем прочности и долговечности металлических конструкций и изделий, эксплуатируемых в условиях контакта с химически агрессивными средами. В последнее время возрастает интерес к компьютерному моделированию эволюции коррозионных повреждений, особенно питтинговой коррозии, для более глубокого понимания коррозионного процесса, его влияния на морфологию, физико-химические свойства поверхности и механическую прочность и долговечность материала. Это обусловлено в основном сложностью аналитических и высокой стоимостью экспериментальных in situ исследований реальных коррозионных процессов. Вместе с тем вычислительные мощности современных компьютеров позволяют с высокой точностью рассчитывать коррозию лишь на относительно небольших участках поверхности. Поэтому разработка новых математических моделей, позволяющих рассчитывать большие области для прогнозирования эволюции коррозионных повреждений металлов, является в настоящее время актуальной проблемой.
В настоящей работе с помощью разработанной компьютерной модели на основе клеточного автомата исследовали эволюцию коррозионного фронта при взаимодействии поверхности поликристаллического металла с жидкой агрессивной средой. Зеренная структура металла задавалась с помощью многоугольников Вороного, используемых для моделирования поликристаллических сплавов. Коррозионное разрушение осуществлялось при помощи задания вероятностной функции перехода между ячейками клеточного автомата. Принималось во внимание, что коррозионная прочность зерен неодинакова вследствие кристаллографической анизотропии. Показано, что это приводит к формированию шероховатой фазовой границы в ходе коррозионного процесса. Снижение концентрации активных частиц в растворе агрессивной среды в ходе протекающей химической реакции приводит к затуханию коррозии за конечное число итераций расчета. Установлено, что конечная фазовая граница имеет фрактальную структуру с размерностью 1.323 ± 0.002, близкой к размерности фронта градиентной перколяции, что хорошо согласуется с фрактальной размерностью фронта травления поликристаллического алюминий-магниевого сплава АМг6 концентрированным раствором соляной кислоты. Показано, что коррозия поликристаллического металла в жидкой агрессивной среде представляет новый пример топохимического процесса, кинетика которого описывается теорией Колмогорова–Джонсона–Мейла–Аврами.
-
К вопросу о численном моделировании внутренней баллистики для трубчатого заряда в пространственной постановке
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 993-1010Для трубчатых пороховых элементов большого удлинения, используемых в артиллерийских метательных зарядах, имеют место условия неравномерного горения. Здесь необходимо параллельно рассматривать процессы горения и движения пороховых газов внутри и вне каналов пороховых трубок. Без этого невозможно адекватно поставить и решить задачи о воспламенении, эрозионном горении и напряженно-деформированном состоянии трубчатых пороховых элементов в процессе выстрела. В работе представлена физико-математическая постановка основной задачи внутренней баллистики артиллерийского выстрела для заряда, состоящего из совокупности пороховых трубок. Горение и движение пучка пороховых трубок по каналу ствола моделируются эквивалентным трубчатым зарядом всестороннего горения. Площади торца и сечения канала такого заряда (эквивалентной трубки) равны сумме площадей торцов и сечений каналов пороховых трубок соответственно. Поверхность горения канала равна сумме внутренних поверхностей трубок в пучке. Внешняя поверхность горения эквивалентной трубки равна сумме внешних поверхностей трубок в пучке. Предполагается, что эквивалентная трубка движется по оси канала ствола. Скорость движения эквивалентного трубчатого заряда и его текущее положение определяются из второго закона Ньютона. Для расчета параметров течения использованы двумерные осесимметричные уравнения газовой динамики, для решения которых строится осесимметричная ортогонализированная разностная сетка, адаптирующаяся к условиям течения. При перемещении и горении трубки разностная сетка перестраивается с учетом изменяющихся областей интегрирования. Для численного решения системы газодинамических уравнений применяется метод контрольного объема. Параметры газа на границах контрольных объемов определяются с использованием автомодельного решения задачи о распаде произвольного разрыва С.К. Годунова. Разработанная методика использована при расчетах внутрибаллистических параметров артиллерийского выстрела. Данный подход рассмотрен впервые и позволяет по-новому подойти к проектированию трубчатых артиллерийских зарядов, поскольку позволяет получить необходимую информацию в виде полей скорости и давления пороховых газов для расчета процесса постепенного воспламенения, нестационарного эрозионного горения, напряженно-деформированного состояния и прочности пороховых элементов при выстреле. Представлены временные зависимости параметров внутрибаллистического процесса и распределения основных параметров течения продуктов горения в различные моменты времени.
-
Моделирование процессов миграции населения: методы и инструменты (обзор)
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1205-1232Миграция оказывает существенное влияние на формирование демографической структуры населения территорий, состояние региональных и локальных рынков труда. Быстрое изменение численности трудоспособного населения той или иной территории из-за миграционных процессов приводит к дисбалансу спроса и предложения на рынках труда, изменению демографической структуры населения. Миграция во многом является отражением социально-экономических процессов, происходящих в обществе. Поэтому становятся актуальными вопросы, связанные с изучением факторов миграции, направления, интенсивности и структуры миграционных потоков, прогнозированием их величины.
Для анализа, прогнозирования миграционных процессов и оценки их последствий часто используется математический инструментарий, позволяющий с нужной точностью моделировать миграционные процессы для различных территорий на основе имеющихся статистических данных. В последние годы как в России, так и в зарубежных странах появилось много научных работ, посвященных моделированию внутренних и внешних миграционных потоков с использованием математических методов. Следовательно, для формирования целостной картины основных тенденций и направлений исследований в этой области возникла необходимость в систематизации наиболее часто используемых методов и инструментов моделирования.
В представленном обзоре на основе анализа современных отечественных и зарубежных публикаций представлены основные подходы к моделированию миграции, основные составляющие методологии моделирования миграционных процессов — этапы, методы, модели и классификация моделей. Обзор содержит два раздела: методы моделирования миграционных процессов и модели миграции. В первом разделе приведено описание основных методов, используемых в процессе разработки моделей — эконометрических, клеточных автоматов, системно-динамических, вероятностных, балансовых, оптимизации и кластерного анализа. Во втором — выделены и описаны наиболее часто встречающиеся классы моделей — регрессионные, агент-ориентированные, имитационные, оптимизационные, веро- ятностные, балансовые, динамические и комбинированные. Рассмотрены особенности, преимущества и недостатки различных типов моделей миграционных процессов, проведен их сравнительный анализ и разработаны общие рекомендации по выбору математического инструментария для моделирования.
-
Математическое моделирование кинетики и расчет дозиметрических характеристик остеотропных радиофармацевтических лекарственных препаратов
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 647-660В отечественной медицине для радионуклидной терапии костных метастазов сегодня применяются два радиофармпрепарата: 89Sr-хлорид и 153Sm-оксабифор. Первый изних имеет много побочных эффектов, поэтому его применение ограничено. Второй доступен только в клиниках, транспортировка его в которые не занимает много времени. В настоящее время клинические исследования проходит третий радиофармпрепарат — 188Re-золерен. В связи с генераторным способом получения 188Re данный радиофармпрепарат должен стать доступным для применения во многих регионах нашей страны. Поэтому возникает необходимость в сравнительном анализе характеристик этих радиофармпрепаратов, в том числе на основе математического моделирования.
В статье рассмотрены особенности математического моделирования кинетики остеотропных радиофармацевтических лекарственных препаратов в организме человека с костными метастазами. На основе четырехкамерной модели разработан и апробирован комплекс моделирования и расчета фармакокинетических и дозиметрических характеристик радиофармпрепаратов для радионуклидной терапии костных метастазов. С использованием клинических данных идентифицированы транспортные константы модели и рассчитаны индивидуальные характеристики отечественных радиофармпрепаратов, меченных 89Sr, 153Sm и 188Re (эффективные периоды полувыведения, максимальные активности в камерах и времена их достижения, поглощенные дозы на костные ткани и метастазы, эндостальный слой кости, красный костный мозг, кровь, почки и мочевой пузырь). Получены и проанализированы зависимости «активность–время» для всех камер модели. Проведен сравнительный анализфар макокинетики и дозиметрии трех радиофармпрепаратов (89Sr-хлорид, 153Sm-оксабифор, 188Re-золерен).
Из сравнительного анализа фармакокинетических и дозиметрических характеристик этих радиофармацевтических лекарственных препаратов следует, что наилучшим изних для широкого применения во многих регионах нашей страны должен стать 188Re-золерен с учетом генераторного способа получения 188Re в условиях стационара.
Ключевые слова: математическое моделирование, ядерная медицина, дозиметрия, кинетика, радиофармпрепарат, камерная модель.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"