Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'корректная постановка':
Найдено статей: 14
  1. Васильев И.А., Дубиня Н.В., Тихоцкий С.А., Начев В.А., Алексеев Д.А.
    Численная модель механического отклика самоподъемной плавучей буровой установки на сейсмические воздействия
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 853-871

    В работе представлены результаты численного моделирования напряженно-деформированного состояния самоподъемных плавучих буровых установок, использующихся для освоения шельфовых месторождений углеводородов. Изучены равновесное напряженное состояние установки, погруженной в донный грунт, и его изменение, вызванное внешним механическим воздействием. Рассмотрена частная задача, в рамках которой в роли внешнего воздействия выступает поверхностная сейсмическая волна от удаленного землетрясения. Исследован отклик системы «самоподъемная плавучая буровая установка – донный грунт» на такое воздействие: проанализировано перераспределение полей напряжений и деформаций в системе, вызванное сейсмическим воздействием. Рассмотрен вопрос устойчивости установки: продемонстрировано, что приход сейсмической волны приводит к резкому росту напряжений в определенных элементах опорных колонн, что может привести к потере устойчивости. Для численного моделирования рассмотренной контактной задачи теории упругости использован метод конечных элементов. Проверка корректности постановки задачи и сходимости ее решения была выполнена путем рассмотрения известной задачи о вдавливании жесткого цилиндра в упругое полупространство. Показано, что использующаяся для анализа устойчивости самоподъемной буровой установки численная схема дает верные результаты для рассмотренной модельной задачи при условии корректного построения сетки конечных элементов. В рамках работы были исследованы роли различных факторов, определяющих условия достижения напряжениями в самоподъемной плавучей буровой установке критических значений: рассмотрены степень выраженности сейсмического воздействия, механические свойства донного грунта и глубина погружения опорных колонн установки в грунт. Сделаны предварительные выводы о необходимости заглубления опорных колонн в донный грунт с учетомег о механических свойств и характерной для региона сейсмичности. Представленный в работе подход может быть использован в качестве инструмента для прогноза рисков, связанных с освоениемм есторождений углеводородов, расположенных на континентальном шельфе, а использованная схема численного моделирования — для решения класса контактных задач теории упругости, требующих анализа динамических процессов.

  2. Никитюк А.С.
    Идентификация параметров вязкоупругих моделей клетки на основе силовых кривых и вейвлет-преобразования
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1653-1672

    Механические свойства клеток эукариот играют важную роль в условиях жизненного цикла и при развитии патологических процессов. В работе обсуждается проблема идентификации и верификации параметров вязкоупругих конститутивных моделей на основе данных силовой спектроскопии клеток эукариот. Предлагается использовать одномерное непрерывное вейвлет-преобразование для расчета ядра релаксации. Приводятся аналитические выкладки и результаты численных расчетов, позволяющие на основе экспериментально установленных силовых кривых и теоретических зависимостей «напряжение – деформация» с применением алгоритмов вейвлет-дифференцирования получать аналогичные друг другу функции релаксации. Анализируются тестовые примеры, демонстрирующие корректности программной реализации предложенных алгоритмов. Рассматриваются модели клетки, на примере которых демонстрируется применение предложенной процедуры идентификации и верификации их параметров. Среди них структурно-механическая модель с параллельно соединенными дробными элементами, которая является на данный момент наиболее адекватной с точки зрения соответствия данным атомно-силовой микроскопии широкого класса клеток, и новая статистико-термодинамическая модель, которая не уступает в описательных возможностях моделям с дробными производными, но имеет более ясный физический смысл. Для статистико-термодинамической модели подробно описывается процедура ее построения, которая в себя включает следующее: введение структурной переменной, параметра порядка, для описания ориентационных свойств цитоскелета клетки; постановку и решение статистической задачи для ансамбля актиновых филаментов представительного объема клетки относительно данной переменной; установление вида свободной энергии, зависящей от параметра порядка, температуры и внешней нагрузки. Также предложено в качестве модели представительного элемента клетки использовать ориентационно-вязкоупругое тело. Согласно теории линейной термодинамики получены эволюционные уравнения, описывающие механическое поведение представительного объема клетки, которые удовлетворяют основным термодинамическим законам. Также поставлена и решена задача оптимизации параметров статистико-термодинамической модели клетки, которая может сопоставляется как с экспериментальными данными, так и с результатами симуляций на основе других математических моделей. Определены вязкоупругие характеристики клеток на основе сопоставления с литературными данными.

  3. Василевский Ю.В., Симаков С.С., Гамилов Т.М., Саламатова В.Ю., Добросердова Т.К., Копытов Г.В., Богданов О.Н., Данилов А.А., Дергачев М.А., Добровольский Д.Д., Косухин О.Н., Ларина Е.В., Мелешкина А.В., Мычка Е.Ю., Харин В.Ю., Чеснокова К.В., Шипилов А.А.
    Персонализация математических моделей в кардиологии: трудности и перспективы
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 911-930

    Большинство биомеханических задач, представляющих интерес для клиницистов, могут быть решены только с помощью персонализированных математических моделей. Такие модели позволяют формализовать и взаимоувязать ключевые патофизиологические процессы, на основе клинически доступных данных оценить неизмеряемые параметры, важные для диагностики заболеваний, спрогнозировать результат терапевтического или хирургического вмешательства. Использование моделей в клинической практике накладывает дополнительные ограничения: практикующие врачи требуют валидации модели на клинических случаях, быстроту и автоматизированность всей расчетной технологической цепочки от обработки входных данных до получения результата. Ограничения на время расчета, определяемые временем принятия врачебного решения (порядка нескольких минут), приводят к необходимости использования методов редукции, корректно описывающих исследуемые процессы в рамках численных моделей пониженной размерности или в рамках методов машинного обучения.

    Персонализация моделей требует пациентоориентированной оценки параметров модели и создания персонализированной геометрии расчетной области и построения расчетной сетки. Параметры модели оцениваются прямыми измерениями, либо методами решения обратных задач, либо методами машинного обучения. Требование персонализации моделей накладывает серьезные ограничения на количество настраиваемых параметров модели, которые могут быть измерены в стандартных клинических условиях. Помимо параметров, модели включают краевые условия, которые также должны учитывать особенности пациента. Методы задания персонализированных краевых условий существенно зависят от решаемой клинической задачи, зоны ее интереса и доступных клинических данных. Построение персонализированной области посредством сегментации медицинских изображений и построение расчетной сетки, как правило, занимают значительную долю времени при разработке персонализированной вычислительной модели, так как часто выполняются в ручном или полуавтоматическом режиме. Разработка автоматизированных методов постановки персонализированных краевых условий и сегментации медицинских изображений с последующим построением расчетной сетки является залогом широкого использования математического моделирования в клинической практике.

    Цель настоящей работы — обзор и анализ наших решений по персонализации математических моделей в рамках трех задач клинической кардиологии: виртуальной оценки гемодинамической значимости стенозов коронарных артерий, оценки изменений системного кровотока после гемодинамической коррекции сложных пороков сердца, расчета характеристик коаптации реконструированного аортального клапана.

  4. Богданов А.В., Мареев В.В., Степанов Э.А., Панченко М.В.
    Моделирование поведения опционов. Формулировка проблемы
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 759-766

    Объектом исследований является создание алгоритма для расчета цен большого числа опционов с целью формирования безрискового портфеля. Метод базируется на обобщении подхода Блэка–Шоулза. Задача состоит в моделировании поведения всех опционов, а также инструментов их страхования. Для данной задачи характерен большой объем параллельных вычислений, которые требуется производить в режиме реального времени. Проблематика исследования: в зависимости от исходных данных используются разные подходы к решению. Существует три метода, которые могут использоваться при разных условиях: конечно-разностный метод, метод функционального интегрирования и метод, который связан с остановкой торгов на рынке. Распределенные вычисления в каждом из этих случаев организуются по- разному и требуют использования различных подходов. Сложность задачи также связана с тем, что в литературе ее математическая постановка не является корректной. Отсутствует полное описание граничных и начальных условий, а также некоторые предположения, лежащие в основе модели, не соответствуют реальным условиям рынка. Необходимо дать математически корректную постановку задачи и убрать несоответствие между предположениями модели и реальным рынком. Для этих целей необходимо расширить стандартную постановку за счет дополнительных методов и улучшить методы реализации для каждого направления решения задачи.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.