Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'классическое решение':
Найдено статей: 50
  1. В последнее десятилетие в онкологии наряду с классическими цитотоксическими агентами при химиотерапии стали активно использоваться антиангиогенные препараты. Они направлены не на убийство злокачественных клеток, а на блокирование процесса ангиогенеза — роста новых сосудов в опухолевом микроокружении. Вещества, стимулирующие ангиогенез, в частности фактор роста эндотелия сосудов, активно вырабатываются опухолевыми клетками, находящимися в состоянии метаболического стресса. Считается, что блокирование опухолевой неоваскуляризации должно привести к нехватке питательных веществ в опухоли, а значит, и к остановке или по крайней мере к существенному замедлению ее роста. Клиническая практика применения первого антиангиогенного препарата, бевацизумаба, показала, что в ряде случаев такая терапия не влияет на скорость роста опухоли, тогда как для других типов опухолей антиангиогенная терапия обладает высоким противоопухолевым действием. Однако было показано, что при успешном замедлении роста опухоли терапия бевацизумабом может вызывать направленную прогрессию опухоли к более инвазивному, а значит, более летальному типу. Эти данные требуют теоретического анализа и определения ключевых факторов, приводящих к такой опухолевой прогрессии, которая в литературе ассоциируется с эпителиально-мезенхимальным переходом. Для решения этой задачи была разработана пространственно-распределенная математическая модель роста и антиангиогенной терапии гетерогенной опухоли, состоящей из двух субпопуляций злокачественных клеток. Одна из субпопуляций обладает свойствами, присущими эпителиальному фенотипу, — малой подвижностью и высокой скоростью пролиферации, другая соответствует мезенхимальному фенотипу и обладает высокой подвижностью и медленной скоростью деления. Проведено исследование конкурентной борьбы между этими субпопуляциями в гетерогенной опухоли как в случае роста опухоли без терапии, так и в случае монотерапии бевацизумабом. Показано, что постоянное использование антиангиогенного препарата приводит к увеличению области в пространстве параметров, где происходит доминирование мезенхимального фенотипа: в определенном диапазоне параметров в отсутствие терапии доминирует эпителиальный фенотип, а при терапии бевацизумабом начинает доминировать мезенхимальный фенотип. Данный результат является теоретическим обоснованием наблюдаемой в клинической практике направленной прогрессии опухоли к более инвазивному типу при проведении антиангиогенной терапии.

    Просмотров за год: 10. Цитирований: 2 (РИНЦ).
  2. В данной работе показаны преимущества использования алгоритмов искусственного интеллекта для планирования эксперимента, позволяющих повысить точность идентификации параметров для эластостатической модели робота. Планирование эксперимента для робота заключается в подборе оптимальных пар «конфигурация – внешняя сила» для использования в алгоритмах идентификации, включающих в себя несколько основных этапов. На первом этапе создается эластостатическая модель робота, учитывающая все возможные механические податливости. Вторым этапом выбирается целевая функция, которая может быть представлена как классическими критериями оптимальности, так и критериями, напрямую следующими из желаемого применения робота. Третьим этапом производится поиск оптимальных конфигураций методами численной оптимизации. Четвертым этапом производится замер положения рабочего органа робота в полученных конфигурациях под воздействием внешней силы. На последнем, пятом, этапе выполняется идентификация эластостатичесих параметров манипулятора на основе замеренных данных.

    Целевая функция для поиска оптимальных конфигураций для калибровки индустриального робота является ограниченной в силу механических ограничений как со стороны возможных углов вращения шарниров робота, так и со стороны возможных прикладываемых сил. Решение данной многомерной и ограниченной задачи является непростым, поэтому предлагается использовать подходы на базе искусственного интеллекта. Для нахождения минимума целевой функции были использованы следующие методы, также иногда называемые эвристическими: генетические алгоритмы, оптимизация на основе роя частиц, алгоритм имитации отжига т. д. Полученные результаты были проанализированы с точки зрения времени, необходимого для получения конфигураций, оптимального значения, а также итоговой точности после применения калибровки. Сравнение показало преимущество рассматриваемых техник оптимизации на основе искусственного интеллекта над классическими методами поиска оптимального значения. Результаты данной работы позволяют уменьшить время, затрачиваемое на калибровку, и увеличить точность позиционирования рабочего органа робота после калибровки для контактных операций с высокими нагрузками, например таких, как механическая обработка и инкрементальная формовка.

  3. Потапов И.И., Снигур К.С.
    Моделирование эволюции песчано-гравийного дна канала в одномерном приближении
    Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 315-328

    В работе предложена математическая модель для одномерного неравновесного руслового процесса. Модель учитывает движение наносов во взвешенном и влекомом состоянии. Транспорт влекомых наносов определен с помощью оригинальной формулы, аналитически полученной из уравнения движения тонкого придонного водогрунтового слоя. Данная формула не содержит новых феноменологических параметров и учитывает влияние уклона дна, физико-механических и гранулометрических параметров донного материала на процесс транспорта влекомых наносов. Для верификации предложенной модели был решен ряд классических тестовых задач. Выполнено сравнение результатов численных расчетов с известными экспериментальными данными и результатами других авторов. Показано, что, несмотря на относительную простоту предложенной математической модели, полученные численные решения хорошо согласуются с экспериментальными данными.

  4. Остроухов П.А., Камалов Р.А., Двуреченский П.Е., Гасников А.В.
    Тензорные методы для сильно выпуклых сильно вогнутых седловых задач и сильно монотонных вариационных неравенств
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 357-376

    В данной статье предлагаются методы оптимизации высокого порядка (тензорные методы) для решения двух типов седловых задач. Первый тип — это классическая мин-макс-постановка для поиска седловой точки функционала. Второй тип — это поиск стационарной точки функционала седловой задачи путем минимизации нормы градиента этого функционала. Очевидно, что стационарная точка не всегда совпадает с точкой оптимума функции. Однако необходимость в решении подобного типа задач может возникать в случае, если присутствуют линейные ограничения. В данном случае из решения задачи поиска стационарной точки двойственного функционала можно восстановить решение задачи поиска оптимума прямого функционала. В обоих типах задач какие-либо ограничения на область определения целевого функционала отсутствуют. Также мы предполагаем, что целевой функционал является $\mu$-сильно выпуклыми $\mu$-сильно вогнутым, а также что выполняется условие Липшица для его $p$-й производной.

    Для задач типа «мин-макс» мы предлагаем два алгоритма. Так как мы рассматриваем сильно выпуклую и сильно вогнутую задачу, первый алгоритмиспо льзует существующий тензорный метод для решения выпуклых вогнутых седловых задач и ускоряет его с помощью техники рестартов. Таким образом удается добиться линейной скорости сходимости. Используя дополнительные предположения о выполнении условий Липшица для первой и второй производных целевого функционала, можно дополнительно ускорить полученный метод. Для этого можно «переключиться» на другой существующий метод для решения подобных задач в зоне его квадратичной локальной сходимости. Так мы получаем второй алгоритм, обладающий глобальной линейной сходимостью и локальной квадратичной сходимостью. Наконец, для решения задач второго типа существует определенная методология для тензорных методов в выпуклой оптимизации. Суть ее заключается в применении специальной «обертки» вокруг оптимального метода высокого порядка. Причем для этого условие сильной выпуклости не является необходимым. Достаточно лишь правильным образом регуляризовать целевой функционал, сделав его таким образом сильно выпуклым и сильно вогнутым. В нашей работе мы переносим эту методологию на выпукло-вогнутые функционалы и используем данную «обертку» на предлагаемом выше алгоритме с глобальной линейной сходимостью и локальной квадратичной сходимостью. Так как седловая задача является частным случаем монотонного вариационного неравенства, предлагаемые методы также подойдут для поиска решения сильно монотонных вариационных неравенств.

  5. Волохова А.В., Земляная Е.В., Качалов В.В., Рихвицкий В.С.
    Моделирование процесса истощения газоконденсатного пласта
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1081-1095

    Одна из трудностей разработки газоконденсатных месторождений обусловлена тем, что часть углеводородов газоносного слоя присутствует в немв виде конденсата, который застревает в порах пласта и извлечению не подлежит. В этой связи активно ведутся исследования, направленные на повышение извлекаемости углеводородов в подобных месторождениях. В том числе значительное количество публикаций посвящено развитию методов математического моделирования прохождения многокомпонентных газоконденсатных смесей через пористую среду в различных условиях.

    В настоящей работе в рамках классического подхода, основанного на законе Дарси и законе неразрывности потоков, сформулирована математическая постановка начально-граничной задачи для системы нелинейных дифференциальных уравнений, описывающая прохождение многокомпонентной газоконденсатной смеси через пористую среду в режиме истощения. Разработанная обобщенная вычислительная схема на основе конечно-разностной аппроксимации и метода Рунге – Кутты четвертого порядка может использоваться для расчетов как в пространственно одномерном случае, соответствующемусловиям лабораторного эксперимента, так и в двумерном случае, когда речь идет о моделировании плоского газоносного пласта с круговой симметрией.

    Численное решение упомянутой системы уравнений реализовано на основе комбинированного использования C++ и Maple с применением технологии параллельного программирования MPI для ускорения вычислений. Расчеты выполнены на кластере HybriLIT Многофункционального информационно-вычислительного комплекса Лаборатории информационных технологий Объединенного института ядерных исследований.

    Численные результаты сопоставлены с данными о динамике выхода девятикомпонентной углеводородной смеси в зависимости от давления, полученными на лабораторной установке (ВНИИГАЗ, Ухта). Расчеты проводились для двух типов пористого наполнителя в лабораторной модели пласта: терригенного (при 25 С) и карбонатного (при 60 С). Показано, что используемый подход обеспечивает согласие полученных численных результатов с экспериментальными данными. Путем подгонки к экспериментальным данным по истощению лабораторной модели пласта получены значения параметров, определяющих коэффициент межфазного перехода для моделируемой системы. С использованием тех же параметров было проведено компьютерное моделирование истощения тонкого газоносного слоя в приближении круговой симметрии.

  6. Плохотников К.Э.
    Проблема выбора решений при классическом формате описания молекулярной системы
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1573-1600

    Разработанные автором недавно численные методики расчета молекулярной системы на базе прямого решения уравнения Шрёдингера методом Монте-Карло показали огромную неопределенностьв выборе решений. С одной стороны, оказалось возможным построить множество новых решений, с другой стороны, резко обостриласьпроб лема их связывания с реальностью. В квантовомеханических расчетах ab initio проблема выбора решений стоит не так остро после перехода к классическому формату описания молекулярной системы в терминах потенциальной энергии, метода молекулярной динамики и пр. В данной работе исследуется проблема выбора решений при классическом формате описания молекулярной системы без учета квантовомеханических предпосылок. Как оказалось, проблема выбора решений при классическом формате описания молекулярной системы сводится к конкретной разметке конфигурационного пространства в виде набора стационарных точек и реконструкции соответствующей функции потенциальной энергии. В такой постановке решение проблемы выбора сводится к двум возможным физико-математическим задачам: по заданной функции потенциальной энергии найти все ее стационарные точки (прямая задача проблемы выбора), по заданному набору стационарных точек реконструироватьф ункцию потенциальной энергии (обратная задача проблемы выбора). В работе с помощью вычислительного эксперимента обсуждается прямая задача проблемы выбора на примере описания моноатомного кластера. Численно оцениваются число и форма локально равновесных (седловых) конфигураций бинарного потенциала. Вводится соответствующая мера по различению конфигураций в пространстве. Предлагается формат построения всей цепочки многочастичных вкладов в функцию потенциальной энергии: бинарный, трехчастичный и т.д., многочастичный потенциал максимальной частичности. Обсуждается и иллюстрируется бесконечное количество локально равновесных (седловых) конфигураций для максимально многочастичного потенциала. Предлагается методика вариации числа стационарных точек путем комбинирования многочастичных вкладов в функцию потенциальной энергии. Перечисленные выше результаты работы направлены на то, чтобы уменьшить тот огромный произвол выбора формы потенциала, который имеет место в настоящее время. Уменьшение произвола выбора выражается в том, что имеющиеся знания о вполне конкретном наборе стационарных точек согласуются с соответствующей формой функции потенциальной энергии.

  7. Аксёнов А.А., Жлуктов С.В., Похилко В.И., Сорокин К.Э.
    Неявный алгоритм решения уравнений движения несжимаемой жидкости
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1009-1023

    Для решения уравнений Навье – Стокса в случае несжимаемых течений разработано большое количество методов, наиболее популярными из которых являются методы с коррекцией скорости по алгоритму SIMPLE, аналогом которого является метод расщепления по физическим переменным. Данные методы, разработанные еще в прошлом веке, использовались для решения достаточно простых задач — расчета как стационарных течений, так и нестационарных, в которых границы расчетной области были неподвижны. В настоящее время задачи вычислительной гидродинамики существенно усложнились. Интерес представляют задачи с движением тел в расчетной области, движением контактных границ, кавитацией и задачи с динамической локальной адаптацией расчетной сетки. При этом расчетная сетка меняется, что приводит к нарушению условия дивергентности скорости на ней. Поскольку дивергентные скорости используются не только для уравнений Навье – Стокса, но и для всех остальных уравнений математической модели движения жидкости — моделей турбулентности, массопереноса и сохранения энергии, нарушение этого условия ведет к численным ошибкам и, зачастую, к расхождению вычислительного алгоритма.

    В статье представлен неявный метод расщепления по физическим переменным, который использует дивергентные скорости с данного шага по времени для решения несжимаемых уравнений Навье – Стокса. Метод разработан для расчета течений при наличии подвижных и контактных границ, моделируемых в постановке Эйлера. Метод позволяет проводить расчеты с шагом интегрирования, на порядки превышающем явный шаг по времени (число Куранта – Фридрихcа – Леви $CFL\gg1$). В данной статье представлен вариант метода для несжимаемых течений. Вариант метода, позволяющий рассчитывать движение жидкости и газа при любых числах Маха, будет опубликован в ближайшее время. Метод для полностью сжимаемых течений реализован в программном комплексе FlowVision.

    В статье приводятся результаты численного решения классической задачи обтекания кругового цилиндра при малых числах Рейнольдса ($50<Re<140$), при которых ламинарное обтекание цилиндра становиться нестационарным и образуется дорожка Кармана. Показано хорошее совпадение расчетов с экспериментальными данными, опубликованными в классических работах Ван-Дайка и Танеды.

  8. Васюков А.В., Беклемышева К.А., Онучин Е.С., Товарнова Н.А., Петров И.Б.
    Расчет скорости поперечной волны при ударе по предварительно нагруженным нитям
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 887-897

    В работе рассматривается задача о поперечном ударе по тонкой предварительно нагруженной нити. Общепринятая теория о поперечному даре по тонкой нити отталкивается от классических публикаций Рахматулина и Смита. На основании теории Рахматулина – Смита получены соотношения, широко используемые в инженерной практике. Однако существуют многочисленные данные о том, что экспериментальные результаты могут существенно отличаться от оценок, сделанных на базе этих соотношений. Краткий обзор факторов, которые вызывают отличия, приведен в тексте статьи.

    Основное внимание в данной статье уделяется скорости поперечной волны, формирующейся при ударе, так как только ее можно непосредственно наблюдать и измерять с помощью высокоскоростной съемки или иных методов. Рассматривается влияние предварительного натяжения нити на скорость волны. Данный фактор важен, так как он неизбежно возникает в результатах натурных испытаний в силу того, что надежное закрепление и точное позиционирование нити на экспериментальной установке требует некоторого ее натяжения. В данной работе показано, что предварительная деформация нити существенно влияет на скорость поперечной волны, возникающей в ходе ударного взаимодействия.

    Выполнены расчеты серии постановок для нитей Kevlar 29 и Spectra 1000. Для различных уровней начального натяжения получены скорости поперечных волн. Приведено прямое сравнение численных результатов и аналитических оценок с данными экспериментов. Для рассмотренных постановок скорость поперечной волны в свободной и в нагруженной нити отличалась практически в два раза. Таким образом, показано, что измерения, основанные на высокоскоростной съемке и анализе наблюдаемых поперечных волн, должны учитывать предварительную деформацию нити.

    В работе предложена формула для быстрой оценки скорости поперечной волны в натянутых нитях. Данная формула получена из основных соотношений теории Рахматулина – Смита в предположении большой начальной деформации нити. На примере рассмотренных постановок для Kevlar 29 и Spectra 1000 показано, что полученная формула может давать существенно лучшие результаты, чем классическое приближение. Также показано, что прямой численный расчет дает результаты, которые оказываются значительно ближе к экспериментальным данным, чем любая из рассмотренных аналитических оценок.

  9. Моисеев Н.А., Назарова Д.И., Семина Н.С., Максимов Д.А.
    Обнаружение точек разворота на финансовых данных с помощью методов глубокого машинного обучения
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 555-575

    Цель настоящего исследования заключается в разработке методологии выявления точек разворота на временных рядах, включая в том числе финансовые данные. Теоретической основой исследования послужили работы, посвященные анализу структурных изменений на финансовых рынках, описанию предложенных алгоритмов обнаружения точек разворота и особенностям построения моделей классического и глубокого машинного обучения для решения данного типа задач. Разработка подобного инструментария представляет интерес для инвесторов и других заинтересованных сторон, предоставляя дополнительные подходы к эффективному анализу финансовых рынков и интерпретации доступных данных.

    Для решения поставленной задачи была обучена нейронная сеть. В ходе исследования было рассмотрено несколько способов формирования тренировочных выборок, которые различаются характером статистических параметров. Для повышения качества обучения и получения более точных результатов была разработана методология формирования признаков, служащих входными данными для нейронной сети. В свою очередь, эти признаки формируются на основе анализа математического ожидания и стандартного отклонения временных рядов на некоторых интервалах. Также исследуется возможностьих комбинации для достижения более стабильных результатов.

    Результаты модельных экспериментов анализируются с целью сравнения эффективности предложенной модели с другими существующими алгоритмами обнаружения точек разворота, получившими широкое применение в решении практических задач. В качестве тренировочных и тестовых данных используется специально созданный датасет, генерация которого осуществляется с использованием собственных методов. Кроме того, обученная на различных признаках модельте стируется на дневных данных индекса S&P 500 в целях проверки ее эффективности в реальном финансовом контексте.

    По мере описания принципов работы модели рассматриваются возможности для дальнейшего ее усовершенствования: модернизации структуры предложенного механизма, генерации тренировочных данных и формирования признаков. Кроме того, перед авторами стоит задача развития существующих концепций определения точек изменения в режиме реального времени.

  10. Подрыга В.О., Поляков С.В.
    Трехмерное молекулярно-динамическое моделирование термодинамического равновесия нагретого никеля
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 573-579

    Представленная работа посвящена молекулярно-динамическому моделированию процессов термического воздействия на металлический образец, который состоит из атомов никеля. Для решения этой задачи используется континуальная математическая модель, основанная на уравнениях классической механики Ньютона, выбран численный метод, использующий в основе схему Верле, предложен параллельный алго- ритм и осуществлена его реализация в рамках MPIи OpenMP. С помощью разработанной параллельной программы было проведено исследование термодинамического равновесия атомов никеля при условии нагрева образца до желаемой температуры. В численных экспериментах определены оптимальные параметры методики расчета и физические параметры исследуемого процесса. Полученные численные результаты хорошо согласуются с известными теоретическими и экспериментальными данными.

    Просмотров за год: 2.
Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.