Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'искусственный интеллект':
Найдено статей: 16
  1. От редакции
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 831-832
    Просмотров за год: 2.
  2. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 455-457
  3. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1097-1100
  4. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 5-6
  5. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1415-1418
  6. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 821-823
  7. Антонов И.В., Бруттан Ю.В.
    Синтез структуры организованных систем как центральная проблема эволюционной кибернетики
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1103-1124

    В статье рассматриваются подходы к эволюционному моделированию синтеза организованных систем и анализируются методологические проблемы эволюционных вычислений этого направления. На основе анализа работ по эволюционной кибернетике, теории эволюции, теории систем и синергетике сделан вывод о наличии открытых проблем в задачах формализации синтеза организованных систем и моделирования их эволюции. Показано, что теоретической основой для практики эволюционного моделирования являются положения синтетической теории эволюции. Рассмотрено использование виртуальной вычислительной среды для машинного синтеза алгоритмов решения задач. На основе полученных в процессе моделирования результатов сделан вывод о наличии ряда условий, принципиально ограничивающих применимость методов генетического программирования в задачах синтеза функциональных структур. К основным ограничениям относятся необходимость для фитнес-функции отслеживать поэтапное приближение к решению задачи и неприменимость данного подхода к задачам синтеза иерархически организованных систем. Отмечено, что результаты, полученные в практике эволюционного моделирования в целом за все время его существования, подтверждают вывод о принципиальной ограниченности возможностей генетического программирования при решении задач синтеза структуры организованных систем. В качестве источников принципиальных трудностей для машинного синтеза системных структур указаны отсутствие направлений для градиентного спуска при структурном синтезе и отсутствие закономерности случайного появления новых организованных структур. Сделан вывод об актуальности рассматриваемых проблем для теории биологической эволюции. Обосновано положение о биологической специфике практически возможных путей синтеза структуры организованных систем. В качестве теоретической интерпретации обсуждаемой проблемы предложено рассматривать системно-эволюционную концепцию П.К. Анохина. Процесс синтеза функциональных структур рассматривается в этом контексте как адаптивная реакция организмов на внешние условия, основанная на их способности к интегративному синтезу памяти, потребностей и информации о текущих условиях. Приведены результаты актуальных исследований, свидетельствующие в пользу данной интерпретации. Отмечено, что физические основы биологической интегративности могут быть связаны с явлениями нелокальности и несепарабельности, характерными для квантовых систем. Отмечена связь рассматриваемой в данной работе проблематики с проблемой создания сильного искусственного интеллекта.

  8. В данной работе представлены результаты экспериментальной проверки некоторых вопросов, касающихся практического использования методов преодоления катастрофической забывчивости нейронных сетей. Проведено сравнение двух таких современных методов: метода эластичного закрепления весов (EWC, Elastic Weight Consolidation) и метода ослабления скоростей весов (WVA, Weight Velocity Attenuation). Разобраныих преимущества и недостатки в сравнении друг с другом. Показано, что метод эластичного закрепления весов (EWC) лучше применять в задачах, где требуется полностью сохранять выученные навыки на всех задачах в очереди обучения, а метод ослабления скоростей весов (WVA) больше подходит для задач последовательного обучения с сильно ограниченными вычислительными ресурсами или же когда требуется не точное сохранение всех навыков, а переиспользование репрезентаций и ускорение обучения от задачи к задаче. Проверено и подтверждено интуитивное предположение, что ослабление метода WVA необходимо применять к оптимизационному шагу, то есть к приращениям весов нейронной сети, а не к самому градиенту функции потерь, и это справедливо для любого градиентного оптимизационного метода, кроме простейшего стохастического градиентного спуска (SGD), для которого оптимизационный шаг и градиент функции потерь пропорциональны. Рассмотрен выбор оптимальной функции ослабления скоростей весов между гиперболической функцией и экспонентой. Показано, что гиперболическое убывание более предпочтительно, так как, несмотря на сравнимое качество при оптимальных значениях гиперпараметра метода WVA, оно более устойчиво к отклонениям гиперпараметра от оптимального значения (данный гиперпараметр в методе WVA обеспечивает баланс между сохранением старых навыков и обучением новой задаче). Приведены эмпирические наблюдения, которые подтверждают гипотезу о том, что оптимальное значение гиперпараметра не зависит от числа задач в очереди последовательного обучения. Следовательно, данный гиперпараметр может подбираться на небольшом числе задач, а использоваться — на более длинных последовательностях.

  9. Никулин А.С., Жедяевский Д.Н., Федорова Е.Б.
    Применение искусственных нейронных сетей для подбора состава смесевого хладагента с заданной кривой кипения
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 593-608

    В работе представлен метод подбора состава смесевого хладагента (СХА) с заданной изобарной кривой кипения с помощью искусственной нейронной сети (ИНС). Данный метод основан на использовании 1D-слоев сверточной нейронной сети. Для обучения нейронной сети была применена термодинамическая модель простого теплообменника в программе UniSim design с использованием уравнения состояния Пенга–Робинсона. С помощью термодинамической модели была создана синтетическая база данных по изобарным кривым кипения СХА разного состава. Для записи базы данных был разработан алгоритм на языке программирования Python, и с помощью COM интерфейса была выгружена информация по изобарным кривым кипения для 1 049 500 вариантов состава СХА. Генерация составов СХА была проведена с помощью метода Монте-Карло с равномерным распределением псевдослучайного числа. Авторами разработана архитектура искусственной нейронной сети, которая позволяет подбирать состав СХА. Для обучения ИНС была применена методика циклически изменяемого коэффициента обучения. В результате применения обученной ИНС был подобран состав СХА с минимальным температурным напором 3 К, а максимальным — не более 10 К между горячим и холодным потоками в теплообменнике. Было проведено сравнение предложенного метода с методом поиска наилучшего совпадения в исходной выборке по методу $k$-ближних соседей, а также со стандартным методом оптимизации SQP в программе UniSim design. Показано, что искусственная нейронная сеть может быть использована для подбора оптимального состава хладагента при анализе кривой охлаждения природного газа. Разработанный метод может помочь инженерам подбирать состав СХА в режиме реального времени, что позволит сократить энергетические затраты на сжижение природного газа.

  10. Настоящая статья описывает разработанную авторами модель построения распределенной вычислительной сети и осуществления в ней распределенных вычислений, которые выполняются в рамках программно-информационной среды, обеспечивающей управление информационными, автоматизированными и инженерными системами интеллектуальных зданий. Представленная модель основана на функциональном подходе с инкапсуляцией недетерминированных вычислений и различных побочных эффектов в монадические вычисления, что позволяет применять все достоинства функционального программирования для выбора и исполнения сценариев управления различными аспектами жизнедеятельности зданий и сооружений. Кроме того, описываемая модель может использоваться совместно с процессом интеллектуализации технических и социотехнических систем для повышения уровня автономности принятия решений по управлению значениями параметров внутренней среды здания, а также для реализации методов адаптивного управления, в частности применения различных техник и подходов искусственного интеллекта. Важной частью модели является направленный ациклический граф, который представляет собой расширение блокчейна с возможностью существенным образом снизить стоимость транзакций с учетом выполнения смарт-контрактов. По мнению авторов, это позволит реализовать новые технологии и методы (распределенный реестр на базе направленного ациклического графа, вычисления на краю и гибридную схему построения искусственных интеллектуальных систем) и все это вместе использовать для повышения эффективности управления интеллектуальными зданиями. Актуальность представленной модели основана на необходимости и важности перевода процессов управления жизненным циклом зданий и сооружений в парадигму Индустрии 4.0 и применения для управления методов искусственного интеллекта с повсеместным внедрением автономных искусственных когнитивных агентов. Новизна модели вытекает из совокупного рассмотрения распределенных вычислений в рамках функционального подхода и гибридной парадигмы построения искусственных интеллектуальных агентов для управления интеллектуальными зданиями. Работа носит теоретический характер. Статья будет интересна ученым и инженерам, работающим в области автоматизации технологических и производственных процессов как в рамках интеллектуальных зданий, так и в части управления сложными техническими и социотехническими системами в целом.

Страницы: следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.