Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'индикаторы':
Найдено статей: 16
  1. Фоновая социальная напряженность общества может быть количественно оценена по различным статистическим индикаторам. Модели, прогнозирующие динамику социальной напряженности, успешно применяются для описания различных социальных процессов. Когда количество рассматриваемых групп общества мало, динамику соответствующих индикаторов можно описать при помощи системы обыкновенных дифференциальных уравнений. При увеличении количества взаимодействующих элементов резко возрастает сложность задач, что существенно затрудняет их аналитическое исследование. Модель сплошной социальной стратификации получаетсяв результате перехода от дискретной цепочки взаимодействующих социальных слоев к их непрерывному распределению на некотором интервале, то есть перехода к модели сплошной среды. В этом случае напряженность распространяется локально, но в действительности элита общества влияет на все слои через средства массовой информации, а также интернет позволяет влиять всем группам на другие. Эти факторы можно учесть через слагаемое модели, описывающее негативное внешнее воздействие. В настоящей работе предложена модель сплошной социальной стратификации, описывающая динамику системы из двух социумов, связанных через процесс миграции населения. Предполагается, что из социального слоя системы-донора с наибольшей напряженностью происходит отток людей, переносящих свою напряженность в систему-акцептор, причем при миграции люди попадают в более бедные слои принимающего общества. Рассматриваетсяслуч ай пространственно однородных коэффициентов, что соответствует частному случаю небольшого социума. При помощи метода конечных объемов построена пространственнаяди скретизация задачи, корректно отражающая конечную скорость распространения напряженности в обществе. Выполнена проверка выбранной дискретизации путем сравненияч исленного решения с точными решениями вспомогательного уравнения нелинейной диффузии. Проведено численное исследование системы с миграцией при различных значениях параметров, проанализировано влияние интенсивности миграции на принимающее общество, найдены условия дестабилизации общества акцептора под влиянием миграции. Полученные в работе результаты могут быть применены при дальнейшем исследовании модели в случае пространственно неоднородных коэффициентов, что соответствует более реалистичной картине общества.

  2. Петров А.П., Подлипская О.Г., Прончев Г.Б.
    Моделирование динамики общественного внимания к протяженным процессам на примере пандемии COVID-19
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1131-1141

    Изучается динамика общественного внимания к эпидемии COVID-19 в ряде стран. При этом в качестве индикатора общественного внимания взято количество поисковых запросов в Google, сделанных в течение суток пользователями изданной страны. В эмпирической части работы рассмотрены данные относительно количества запросов и количества новых заболевших для ряда стран. Показано, что во всех рассмотренных странах максимум общественного внимания наступил ранее максимума количества новых зараженных за день. Тем самым обнаружено, что в течение некоторого периода времени рост эпидемии происходит параллельно со спадом общественного внимания к ней. Также показано, что спад количества запросов описывается экспоненциальной функцией времени. Для того чтобы описать выявленную эмпирическую зависимость, предложена математическая модель, представляющая собой модификацию модели спада внимания после одноразового политического события. Модель развивает подход, рассматривающий принятие решения индивидом как членом социума, в котором происходит информационный процесс. В рамках этого подхода предполагается, что решение индивида о том, делать ли в данный день поисковый запрос на тему COVID, формируется на основании двух факторов. Один изн их — это установка, отражающая долгосрочную заинтересованность индивида в данной теме и аккумулирующая предыдущий опыт индивида, его культурные предпочтения, социальное и экономическое положение. Второй — динамический фактор общественного внимания к данному процессу — изменяется в течение рассматриваемого процесса под влиянием информационных стимулов. Применительно к рассматриваемой тематике информационные стимулы связны с эпидемической динамикой. Пове- денческая гипотеза состоит в том, что если в некоторый день сумма установки и динамического фактора превышает некоторую пороговую величину, то в этот день индивид делает поисковый запрос на тему COVID. Общая логика состоит в том, что чем выше скорость роста числа заболевших, тем выше информационный стимул, тем медленнее убывает общественное внимание к пандемии. Таким образом, построенная модель позволила соотнести скорость экспоненциального убывания количества запросов со скоростью роста количества заболевших. Обнаруженная с помощью модели закономерность проверена на эмпирических данных. Получено, что статистика Стьюдента равна 4,56, что позволяет отклонить гипотезу об отсутствии корреляционной связи с уровнем значимости 0,01.

  3. Яковлев А.А., Абакумов А.И., Костюшко А.В., Маркелова Е.В.
    Цитокины как индикаторы состояния организма при инфекционных заболеваниях. Анализ экспериментальных данных
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1409-1426

    При заболеваниях человека в результате бактериального заражения для наблюдения за ходом болезни используются различные характеристики организма. В настоящее время одним из таких индикаторов принимается динамика концентраций цитокинов, вырабатываемых в основном клетками иммунной системы. В организме человека и многих видов животных присутствуют эти низкомолекулярные белки. Исследование цитокинов имеет важное значение для интерпретации нарушений функциональной состоятельности иммунной системы организма, оценки степени тяжести, мониторинга эффективности проводимой терапии, прогноза течения и исхода лечения. При заболевании возникает цитокиновый отклик организма, указывающий на характеристики течения болезни. Для исследования закономерностей такой индикации проведены эксперименты на лабораторных мышах. В работе анализируются экспериментальные данные о развитии пневмонии и лечении несколькими препаратами при бактериальном заражении мышей. В качестве препаратов использовались иммуномодулирующие препараты «Ронколейкин», «Лейкинферон» и «Тинростим». Данные представлены динамикой концентраций двух видов цитокинов в легочной ткани и крови животных. Многосторонний статистический и нестатистический анализ данных позволил выявить общие закономерности изменения концентраций цитокинов в организме и связать их со свойствами лечебных препаратов. Исследуемые цитокины «Интерлейкин-10» (ИЛ-10) и «Интерферон Гамма» (ИФН$\gamma$) у зараженных мышей отклоняются от нормального уровня интактных животных, указывая на развитие заболевания. Изменения концентраций цитокинов в группах лечимых мышей сравниваются с этими показателями в группе здоровых (не зараженных) мышей и группе зараженных нелеченных особей. Сравнение делается по группам особей, так как концентрации цитокинов индивидуальны и значительно отличаются у разных особей. В этих условиях только группы особей могут указать на закономерности процессов течения болезни. Эти группы мышей наблюдались в течение двух недель. Динамика концентраций цитокинов указывает на характеристики течения болезни и эффективность применяемых лечебных препаратов. Воздействие лечебного препарата на организмы отслеживается по расположению указанных групп особей в пространстве концентраций цитокинов. В этом пространстве используется расстояние Хаусдорфа между множествами векторов концентраций цитокинов у особей, основанное на евклидовом расстоянии между элементами этих множеств. Выяснено, что препараты «Ронколейкин» и «Лейкинферон» оказывают в целом сходное между собой и отличное от препарата «Тинростим» воздействие на течение болезни.

  4. Макаров И.С., Баганцова Е.Р., Яшин П.А., Ковалёва М.Д., Захарова Е.М.
    Разработка и исследование жесткого алгоритма анализа публикаций в Twitter и их влияния на движение рынка криптовалют
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 157-170

    Посты в социальных сетях являются важным индикатором, отображающим положение активов на финансовом рынке. В статье описывается жесткое решение задачи классификации для определения влияния активности в социальных сетях на движение финансового рынка. Отбираются аккаунты авторитетных в сообществе крипто-трейдеров-инфлюенсеров. В качестве данных используются специальные пакеты сообщений, которые состоят из текстовых постов, взятых из Twitter. Приведены способы предобработки текста, заключающиеся в лемматизации Stanza и применении регулярных выражений, для очищения зашумленных текстов, особенностью которых является многочисленное употребление сленговых слов и сокращений. Решается задача бинарной классификации, где слово рассматривается как элемент вектора единицы данных. Для более точного описания криптовалютной активности ищутся наилучшие параметры разметки для обработки свечей Binance. Методы выявления признаков, необходимых для точного описания текстовых данных и последующего процесса установления зависимости, представлены в виде машинного обучения и статистического анализа. В качестве первого используется отбор признаков на основе критерия информативности, который применяется при разбиении решающего дерева на поддеревья. Такой подход реализован в модели случайного леса и актуален для задачи выбора значимых для «стрижки деревьев» признаков. Второй же основан на жестком составлении бинарного вектора в ходе грубой проверки наличия либо отсутствия слова в пакете и подсчете суммы элементов этого вектора. Затем принимается решение в зависимости от преодоления этой суммой порогового значения, базирующегося на уровне, предварительно подобранном с помощью анализа частотного распределения упоминаний слова. Алгоритм, используемый для решения проблемы, был назван бенчмарком и проанализирован в качестве инструмента. Подобные алгоритмы часто используются в автоматизированных торговых стратегиях. В процессе исследования также описаны наблюдения влияния часто встречающихся в тексте слов, которые используются в качестве базиса размерностью 2 и 3 при векторизации.

  5. Митин Н.А., Орлов Ю.Н.
    Статистический анализ биграмм специализированных текстов
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 243-254

    Метод спектрального анализа стохастической матрицы применяется для построения индикатора, позволяющего определять тематику научных текстов без использования ключевых слов. Эта матрица представляет собой матрицу условных вероятностей биграмм, построенную по статистике используемых в тексте символов алфавита без учета пробелов, цифр и знаков препинания. Научные тексты классифицируются по взаимному расположению инвариантных подпространств матрицы условных вероятностей пар буквосочетаний. Индикатор разделения — величина косинуса угла между правым и левым собственными векторами, отвечающими максимальному и минимальному собственным значениям. Вычислительный алгоритм использует специальное представление параметра дихотомии, в качестве которого выступает интеграл от нормы квадрата резольвенты стохастической матрицы биграмм по окружности заданного радиуса в комплексной плоскости. Стремление интеграла в бесконечность свидетельствует о приближении контура интегрирования к собственному значению матрицы. В работе приведены типовые распределения индикатора идентификации специальностей. Для статистического анализа были проанализированы диссертации по основным 19 специальностям ВАК без учета классификации внутри специальности, по 20 текстов на специальность. Выяснилось, что эмпирические распределения косинуса угла для физико-математических и гуманитарных специальностей не имеют общего носителя, поэтому могут быть формально разделены по значению этого индикатора без ошибки. Хотя корпус текстов был не особенно большой, тем не менее при произвольном отборе диссертаций ошибка идентификации на уровне 2 % представляется очень хорошим результатом по сравнению с методами, основанными на семантическом анализе. Также выяснилось, что можно составить паттерн текста по каждой из специальностей в виде эталонной матрицы биграмм, по близости к которой в норме суммируемых функций можно безошибочно идентифицировать тематику написанного научного произведения, не используя ключевые слова. Предложенный метод можно использовать и в качестве сравнительного индикатора большей или меньшей строгости научного текста или как индикатор соответствия текста определенному научному уровню.

  6. Разработана динамическая макромодельмиров ой динамики. В модели мир разбит на 19 регионов по географическому принципу согласно классификации Организации объединенных наций. Внутреннее развитие регионов описывается уравнениями разностного типа для демографических и экономических индикаторов, таких как численностьнас еления, валовой продукт, валовое накопление. Межрегиональные взаимодействия представляют собой агрегированные торговые потоки от региона к региону и описываются регрессионными уравнениями. В качестве регрессоров использовались время, валовой продукт экспортера и валовой продукт импортера. Рассматривалосьчеты ре типа: временная парная регрессия — зависимость торгового потока от времени, экспортная функция — зависимостьд оли торгового потока в валовом продукте экспортера от валового продукта импортера, импортная функция — зависимостьд оли торгового потока в валовой продукции импортера от валового продукта экспортера, множественная регрессия — зависимостьт оргового потока от валовых продуктов экспортера и импортера. Для каждого типа применялосьд ва вида функциональной зависимости: линейная и логарифмически-линейная, всего исследовано восемьв ариантов торгового уравнения. Проведено сравнение качества регрессионных моделей по коэффициенту детерминации. Расчеты показывают, что модель удовлетворительно аппроксимирует динамику монотонно меняющихся показателей. Проанализирована динамика немонотонных торговых потоков, для их аппроксимации предложено три вида функциональной зависимости от времени. Показано, что с 10%-й погрешностью множество внешнеторговых рядов может бытьприб лижено пространством семи главных компонент. Построен прогноз автономного развития регионов и глобальной динамики до 2040 года.

Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.