Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'жесткопластическая среда':
Найдено статей: 5
  1. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 5-7
  2. Грачев В.А., Найштут Ю.С.
    Сплошные среды из тонких пластин
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 655-670

    Представлена фрактальная система из тонких шарнирно соединенных пластинок, которая может быть изучена методами механики сплошной среды с внутренними степенями свободы. Конструкция является трансформирующейся: в начальном положении это практически одномерное многообразие малого диаметра, после развертки система занимает значительный объем. Геометрия сплошной среды исследуется методом подвижного репера. На основе уравнений структуры Картана выводятся соотношения, позволяющие определить геометрию введенных многообразий. В доказательствах существенно используется тот факт, что составляющие фрактал пластинки являются тонкими, а их длина мала по сравнению с габаритами системы. Изучается механика введенных сплошных сред, если шарниры между пластинками являются идеальными жесткопластическими и выполнены из материалов с памятью формы. Опираясь на теоремы о предельных нагрузках, вычисляются внутреннее давление, необходимое для развертывания пакета в объемную конструкцию, а также затраты тепла для возврата системы в первоначальное состояние.

    Просмотров за год: 2.
  3. Грачев В.А., Найштут Ю.С.
    Деформирование жесткопластических тел с памятью формы при переменных нагрузках и температуре
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 63-77

    Деформирование сплошных сред из материалов с памятью формы под влиянием возрастающей нагрузки и при постоянной температуре протекает обычным для металлов идеальным упругопластическим образом. При этом величина максимальных упругих деформаций много меньше предельных пластических. Восстановление формы происходит при повышенной температуре и невысоком уровне напряжений. Феноменологически «обратное» деформирование аналогично с точностью до знака изменению формыпри активном загружении силами. Так как в неупругом процессе решающую роль играет пластическая деформация, то анализ механического поведения целесообразно провести в рамках идеальной жесткопластической модели с двумя поверхностями нагружения. В этой модели поверхностям нагружения отвечают два физических состояния материала: пластическое течение при высоких напряжениях и плавление при сравнительно невысокой температуре. Во втором параграфе формулируется задача деформирования жесткопластических сред при постоянной температуре в двух формах: в виде принципа виртуальных скоростей с условием текучести Мизеса и как требование минимальности диссипативного функционала. Доказываются равносильность принятых формулировок и существование обобщенных решений в обоих принципах. В третьем параграфе изучается жесткопластическая модель сплошной среды при изменяющейся температуре с двумя поверхностями нагружения. Для принятой модели формулируются два оптимальных принципа, связывающих внешние нагрузки и скорости перемещений точек среды как при активном нагружении, так и в процессе восстановления формыпр и нагревании. Доказано существование обобщенных скоростей для широкого класса трехмерных областей. Связь вариационных принципов и изменяющейся температуры обеспечивается включением в расчетную схему первого и второго начал термодинамики. Существенно, что в процессе доказательств используется только феноменологическое описание явления. Аустенитно-мартенситные превращения сплавов, которые часто являются основными при объяснении механического поведения материалов с памятью формы, не используются. В четвертом параграфе дано определение материалов с памятью формы как сплошных сред с двумя поверхностями нагружения, доказано существование решений в принятых ограничениях. Показана адекватность модели и опытов по деформированию материалов с памятью формы. В заключении формулируются математические задачи, которые представляются интересными в будущих исследованиях.

  4. Изучается геометрия сплошных сред с внутренними степенями свободы методом подвижного репера Картана. Выводятся условия неразрывности деформаций в форме уравнений структуры для многообразий. Предлагаются определяющие соотношения для жесткопластических сред с внутренними степенями свободы. Доказываются аналоги теорем о предельных нагрузках. Показано применение этих теорем для анализа поведения жесткопластических континуальных оболочек из материалов, обладающих памятью формы. Приведено вычисление предельных нагрузок для оболочек вращения при воздействии внешних сил и при восстановлении формы от нагрева.

    Цитирований: 2 (РИНЦ).
  5. Найштут Ю.С.
    О границе упругопластических тел минимального объема
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 503-515

    В статье изучаются упругопластические тела минимального объема. Часть границы всех рассматриваемых тел закреплена в одних и тех же точках пространства, на остальной части граничной поверхности заданы напряжения (загруженная поверхность). Форма загруженной поверхности может изменяться в пространстве, но при этом коэффициент предельной нагрузки, вычисленный в предположении, что тела заполнены упругопластической средой, не должен быть меньше фиксированного значения. Кроме того, предполагается, что все варьируемые тела содержат внутри себя некоторое эталонное многообразие ограниченного объема.

    Поставлена следующая задача: какое максимальное количество полостей (или отверстий в двумерном случае) может иметь тело (пластина) минимального объема при сформулированных выше ограничениях? Установлено, что для того, чтобы задача была математически корректно сформулирована, необходимо потребовать выполнения двух дополнительных условий: площади отверстий должны превосходить малую константу, а общая длина контуров внутренних отверстий в оптимальной фигуре должна быть минимальна среди варьируемых тел. Таким образом, в отличие от большинства работ по оптимальному проектированию упругопластических систем, когда осуществляется параметрический анализ приемлемых решений при заданной топологии, в работе проводится поиск топологического параметра связности проектируемой конструкции.

    Изучается случай, когда коэффициент предельной нагрузки для эталонного многообразия достаточно велик, а площади допустимых отверстий в варьируемых пластинах превосходят малую константу. Приводятся аргументы, подтверждающие, что в этих условиях оптимальная фигура является стержневой системой Максвелла или Мичелла. В качестве примеров представлены микрофотографии типичных для биологических систем костных тканей. Показано, что в системе Мичелла не может быть внутренних отверстий большой площади. В то же время в стержневом наборе Максвелла могут существовать значительные по площади отверстия. Приводятся достаточные условия, когда в оптимальной по объему сплошной пластинке можно образовать отверстия. Результаты допускают обобщения и на трехмерные упругопластичные конструкции.

    Статья завершается формулировкой математических проблем, вытекающих из постановки новой задачи оптимального проектирования упругопластических систем.

    Просмотров за год: 8.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.