Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'долгопериодические колебания':
Найдено статей: 1
  1. Русаков А.В., Бобырев А.Е., Бурменский В.А., Криксунов Е.А., Нуриева Н.И., Медвинский А.Б.
    Математическая модель озерного сообщества с учетом целочисленности размера популяции: хаотические и долгопериодные колебания
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 229-239

    В работе представлены результаты исследования целочисленной модели водного сообщества, состоящего из популяций зоопланктона, мирной и хищной рыбы. Рассматривается структура популяции гидробионтов по массе и по возрасту, а также описываются соответствующие такой структуре трофические взаимодействия между популяциями. Модель воспроизводит различные динамические режимы: стационарные и колебательные. Колебания численности рыбных популяций при этом могут быть регулярными и нерегулярными. Показано, что период регулярных колебаний может составлять десятки лет, а нерегулярные колебания численности рыбных популяций могут быть как хаотическими, так и нехаотическими. В результате анализа модели в пространстве параметров показано, что предсказуемость динамики рыбных популяций может быть затруднена не только в результате возникновения динамического хаоса, но и в результате конкуренции между различными динамическими режимами, возникающей при вариации параметров модели, в частности при изменениях скорости роста зоопланктона.

    Просмотров за год: 6.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.