Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Мониторинг распространения борщевика Сосновского с использованием алгоритма машинного обучения «случайный лес» в Google Earth Engine
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1357-1370Изучение спектрального отклика растений на основе данных, собранных с помощью дистанционного зондирования, имеет большой потенциал для решения реальных проблем в различных областях исследований. В этом исследовании мы использовали спектральные свойства для идентификации инвазивного растения — борщевика Сосновского — по спутниковым снимкам. Борщевик Сосновского — инвазивное растение, которое наносит много вреда людям, животным и экосистеме в целом. Мы использовали выборочные данные о геолокации мест произрастания борщевика в Московской области, собранные с 2018 по 2020 год, и спутниковые снимки Sentinel-2 для спектрального анализа с целью его обнаружения на снимках. Мы развернули модель машинного обучения Random Forest (RF) на облачной платформе Google Earth Engine (GEE). Алгоритм обучается на наборе данных, состоящем из 12 каналов спутниковых снимков Sentinel-2, цифровой модели рельефа и некоторых спектральных индексов, которые используются в алгоритме в качестве параметров. Используемый подход заключается в выявлении биофизических параметров борщевика Сосновского по его коэффициентам отражения с уточнением радиочастотной модели непосредственно по набору данных. Наши результаты наглядно демонстрируют насколько сочетание методов дистанционного зондирования и машинного обучения может помочь в обнаружении борщевика и контроле его инвазивного распространения. Наш подход обеспечивает высокую точность обнаружения очагов произрастания борщевика Сосновского, составляющую 96,93 %.
Ключевые слова: борщевик Сосновского, инвазивные растения, Google Earth Engine, машинное обучение, случайный лес. -
Модельный способ оценки содержания хлорофилла в море на основании спутниковой информации
Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 473-482Просмотров за год: 5. Цитирований: 2 (РИНЦ).На основе математическоймо дели динамики биомасс фитопланктона построен способ оценки содержания хлорофилла в районе моря с учетом его распределения по глубине. Модель построена на основе уравнения «реакция-диффузия», учитывает основные влияющие факторы: минеральное питание, освещенность и температуру. Используется спутниковая информация о поверхностном слое моря. Приведен пример расчетов для залива Петра Великого (Японское море).
-
Модельный подход к определению валовой и нетто первичной продукции лесных экосистем по величине поглощенной фотосинтетически активной радиации
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 345-353Просмотров за год: 1. Цитирований: 2 (РИНЦ).В работе предложена простая нелинейная модель, позволяющая рассчитать суточные и месячные значения валовой (GPP) и нетто (NPP) первичной продукции лесов по параметрам, характеризующим эффективность использования растениями ФАР на GPP и NPP, а также по интегральной величине поглощенной растительностью фотосинтетически активной радиации ФАР, определяемой в ходе измерений, в том числе средствами дистанционного зондирования. Необходимые для построения модели значения GPP и NPP определялись по данным измерений потоков СО2 в еловых и влажных тропических лесах с применением процесс-ориентированной модели Mixfor-SVAT.
-
Перспективы использования космоснимков для прогнозирования загрязнения воздуха тяжелыми металлами
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 535-544Просмотров за год: 21.Контроль за загрязнением воздуха имеет большое значение для стран Европы и Азии. В рамках Конвенции ООН по дальнему трансграничному переносу воздушных загрязнений (СLRTAP) реализуется программа UNECE ICP Vegetation, направленная на определение наиболее неблагополучных областей, создание региональных карт и улучшение понимания природы долгосрочных трансграничных загрязнений. В Объединенном институте ядерных исследований была разработана облачная платформа, предоставляющая участникам программы ICP Vegetation удобные инструменты для сбора, анализа и обработки данных мониторинга. В настоящее время в системе содержится информация о более чем 6000 точках пробоотбора в 40 регионах различных стран Европы и Азии.
Важным этапом контроля является моделирование загрязнений в местах, где частота исследований или плотность покрытия сети сбора образцов недостаточны. Одним из подходов к прогнозированию загрязнений является использование специализированных статистических моделей и методов машинного обучения совместно с различными количественными показателями точек сбора образцов и информацией о концентрациях элементов. Наиболее перспективным источником количественных показателей для обучения моделей являются космические снимки в различных спектрах. Обученная должным образом модель позволит получать прогноз по концентрациям элементов, используя исключительно космоснимки. Специализированная платформа Google Earth Engine предоставляет широкие возможности для анализа и обработки данных от более чем 100 различных проектов дистанционного зондирования земли, удобный интерфейс разработчика на JavaScript и программный интерфейс на Python для использования в сторонних приложениях.
В работе рассматривается возможность использования статистических показателей космоснимков, полученных от платформы Google Earth Engine, совместно с данными мониторинга состояния окружающей среды проекта ICP Vegetation для обучения моделей, способных прогнозировать концентрацию тяжелых металлов в определенных регионах.
-
Использование облачных технологий CERN для дальнейшего развития по TDAQ ATLAS и его применения при обработке данных ДЗЗ в приложениях космического мониторинга
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 683-689Просмотров за год: 2.Облачные технологий CERN (проект CernVM) дают новые возможности разработчикам программного обеспечения. Участие группы TDAQ ATLAS ОИЯИ в разработке ПО распределенной системы сбора и обработке данных эксперимента ATLAS (CERN) связано с необходимостью работы в условиях динамично развивающейся системы и ее инфраструктуры. Использование облачных технологий, в частности виртуальных машин CernVM, предоставляет наиболее эффективные способы доступа как к собственно ПО TDAQ, так и к ПО, используемому в CERN: среда — Scientific Linux и software repository c CernVM-FS. Исследуется вопрос о возможности функционирования ПО промежуточного уровня (middleware) в среде CernVM. Использование CernVM будет проиллюстрировано на трех задачах: разработка пакетов Event Dump и Webemon, а также на адаптации системы автоматической проверки качества данных TDAQ ATLAS — Data Quality Monitoring Framework для задач оценки качества радиолокационных данных.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"