Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'динамика движения':
Найдено статей: 74
  1. Аксёнов А.А., Жлуктов С.В., Похилко В.И., Сорокин К.Э.
    Неявный алгоритм решения уравнений движения несжимаемой жидкости
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1009-1023

    Для решения уравнений Навье – Стокса в случае несжимаемых течений разработано большое количество методов, наиболее популярными из которых являются методы с коррекцией скорости по алгоритму SIMPLE, аналогом которого является метод расщепления по физическим переменным. Данные методы, разработанные еще в прошлом веке, использовались для решения достаточно простых задач — расчета как стационарных течений, так и нестационарных, в которых границы расчетной области были неподвижны. В настоящее время задачи вычислительной гидродинамики существенно усложнились. Интерес представляют задачи с движением тел в расчетной области, движением контактных границ, кавитацией и задачи с динамической локальной адаптацией расчетной сетки. При этом расчетная сетка меняется, что приводит к нарушению условия дивергентности скорости на ней. Поскольку дивергентные скорости используются не только для уравнений Навье – Стокса, но и для всех остальных уравнений математической модели движения жидкости — моделей турбулентности, массопереноса и сохранения энергии, нарушение этого условия ведет к численным ошибкам и, зачастую, к расхождению вычислительного алгоритма.

    В статье представлен неявный метод расщепления по физическим переменным, который использует дивергентные скорости с данного шага по времени для решения несжимаемых уравнений Навье – Стокса. Метод разработан для расчета течений при наличии подвижных и контактных границ, моделируемых в постановке Эйлера. Метод позволяет проводить расчеты с шагом интегрирования, на порядки превышающем явный шаг по времени (число Куранта – Фридрихcа – Леви $CFL\gg1$). В данной статье представлен вариант метода для несжимаемых течений. Вариант метода, позволяющий рассчитывать движение жидкости и газа при любых числах Маха, будет опубликован в ближайшее время. Метод для полностью сжимаемых течений реализован в программном комплексе FlowVision.

    В статье приводятся результаты численного решения классической задачи обтекания кругового цилиндра при малых числах Рейнольдса ($50<Re<140$), при которых ламинарное обтекание цилиндра становиться нестационарным и образуется дорожка Кармана. Показано хорошее совпадение расчетов с экспериментальными данными, опубликованными в классических работах Ван-Дайка и Танеды.

  2. Тишкин В.Ф., Трапезникова М.А., Чечина А.А., Чурбанова Н.Г.
    Моделирование транспортных потоков на основе квазигазодинамического подхода и теории клеточных автоматов с использованием суперкомпьютеров
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 175-194

    Целью исследования являются моделирование динамики автотранспортных потоков на транспортных сетях мегаполисов и систематизация современного состояния дел в этой области. Во введении указывается, что на первый план выходит развитие интеллектуальных транспортных систем, которые становятся неотъемлемой частью современных транспортных технологий. Основным ядром таких систем являются адекватные математические модели, максимально приближенные к реальности. Отмечается, что в связи с большим объемом вычислений необходимо использование суперкомпьютеров, следовательно, создание специальных пар аллельных алгоритмов. В начале статьи приводится современная классификация моделей, обсуждаются отличительные особенности каждого класса со ссылками на соответствующие примеры. Далее основное внимание уделяется созданным авторами статьи разработкам в области как макроскопического, так и микроскопического моделирования и определению места этих разработок в приведенной выше классификации. Макроскопическая модель основана на приближении сплошной среды и использует идеологию квазигазодинамических систем уравнений. Указаны ее достоинства по сравнению с существующими моделями этого класса. Система уравнений модели представлена как в одномерном варианте, но с возможностью исследования многополосного движения, так и в двумерном варианте, с введением понятия боковой скорости, то есть скорости перестроения из полосы в полосу. Второй вариант позволяет проводить вычисления в расчетной области, соответствующей реальной геометрии дороги. Представлены тестовые расчеты движения по дороге с локальным расширением и по дороге с системой светофоров с различными светофорными режимами. Расчеты позволили в первом случае сделать интересные выводы о влиянии расширения на пропускную способность дороги в целом, а во втором случае — выбрать оптимальный режим для получения эффекта «зеленой волны». Микроскопическая модель основана на теории клеточных автоматов и однополосной модели Нагеля – Шрекенберга и обобщена авторами на случай многополосного движения. В модели реализованы различные поведенческие стратегии водителей. В качестве теста моделируется движение на реальном участке транспортной сети в центре г. Москвы. Причем для грамотного прохождения транспортных узлов сети в соответствии с правилами движения реализованы специальные алгоритмы, адаптированные для параллельных вычислений. Тестовые расчеты выполнены на суперкомпьютере К-100 ЦКП ИПМ им. М. В. Келдыша РАН.

  3. Работа посвящена анализу медико-биологических данных, получаемых с помощью локомоторных тренировок и тестирований космонавтов, проводимых как на Земле, так и во время полета. Данные эксперименты можно описать как движение космонавта по беговой дорожке согласно прописанному регламенту в различных скоростных режимах, во время которых не только записывается скорость, но и собирается ряд показателей, включающих частоту сердечных сокращений, величину давления на опору и пр. С целью анализа динамики состояния космонавта на протяжении длительного времени, для независимой оценки целевых показателей необходимо проводить качественную сегментацию режимов его движения. Особую актуальность данная задача приобретает при разработке автономной системы жизнеобеспечения космонавтов, которая будет действовать без сопровождения персонала с Земли. При сегментации целевых данных сложность заключается в наличии различных аномалий, включая отход испытуемого от заранее прописанного регламента, переходы между режимами движения произвольного вида и длительности, аппаратные сбои и пр. Статья включает в себя подробный обзор ряда современных ретроспективных (оффлайн) непараметрических методов поиска многократных разладок во временном ряде, где под разладкой понимается резкое изменение свойств наблюдаемого ряда, происходящее в неизвестный заранее момент времени. Особое внимание уделено алгоритмам и статистическим показателям, которые определяют степень однородности данных, а также способам поиска точек разладки. В данной работе рассматриваются подходы, основанные на методах динамического программирования и скользящего окна. Вторая часть статьи посвящена численному моделированию представленных методов на характерных примерах экспериментальных данных, включающих как простые, так и сложные скоростные профили движения. Проведенный анализ позволил выделить методы, которые в дальнейшем будут проанализированы на полном корпусе данных. Предпочтение отдается методам, обеспечивающим близость разметки к заданному эталону, потенциально позволяющим детектировать обе границы переходных процессов, а также обладающим робастностью относительно внутренних параметров.

  4. Погорелова Е.А., Лобанов А.И.
    Высокопроизводительные вычисления в моделировании крови
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 917-941

    Приведен обзор методов моделирования движения и реологических свойств крови как суспензии взвешенных частиц. Рассмотрены методы граничных интегральных уравнений, решеточных уравнений Больцмана, конечных элементов на подвижных сетках, диссипативной динамики частиц, а также агентные модели. Приведен анализ применения этих методов при расчетах на высокопроизводительных системах различной архитектуры.

    Просмотров за год: 2. Цитирований: 3 (РИНЦ).
Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.