Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'декомпозиция на сборочные единицы':
Найдено статей: 4
  1. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 939-942
  2. Божко А.Н.
    Структурные модели изделия в автоматизированных системах проектирования
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1079-1091

    Автоматизированное проектирование процессов сборки сложных систем — это важное направление современных информационных технологий. Последовательность сборки и декомпозиция изделия на сборочные единицы в значительной степени зависят от механической структуры технической системы (машины, механического прибора и др.). В большей части современных исследований механическая структура изделий моделируется при помощи графа связей и различных его модификаций. Координация деталей при сборке может достигаться реализацией нескольких связей одновременно. Это порождает на множестве деталей изделия многоместное отношение базирования, которое не может быть корректно описано графовыми средствами. Предложена гиперграфовая модель механической структуры изделия. В современном дискретном производстве используются секвенциальные когерентные сборочные операции. Математическим описанием таких операций служит нормальное стягивание ребер гиперграфовой модели. Последовательность стягиваний, которая преобразуют гиперграф в точку, представляет собой описание сборочного плана. Гиперграфы, для которых существует такое преобразование, называются $s$-гиперграфами. $s$-гиперграфы — это корректные математические модели механических структур любых собираемых изделий. Приводится теорема о необходимых условиях стягиваемости $s$-гиперграфов. Показано, что необходимые условия не являются достаточными. Дан пример нестягиваемого гиперграфа, для которого выполняются необходимые условия. Это значит, что проект сложной технической системы может содержать скрытые структурные ошибки, которые делают невозможным сборку изделия. Поэтому поиск достаточных условий стягиваемости является важной задачей. Доказаны две теоремы о достаточных условиях стягиваемости. Они дают теоретическое основание для разработки эффективной вычислительной процедуры поиска всех $s$-подграфов $s$-гиперграфа. $s$-подграф — это модель любой части изделия, которую можно собрать независимо. Это прежде всего сборочные единицы различного уровня иерархии. Упорядоченное по включению множество всех $s$-подграфов $s$-гиперграфа представляет собой решетку. Эту модель можно использовать для синтеза всевозможных последовательностей сборки и разборки изделия и его составных частей. Решеточная модель изделия позволяет анализировать геометрические препятствия при сборке алгебраическими средствами.

  3. Божко А.Н.
    Анализ механических структур сложных технических систем
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 903-916

    Работа посвящена структурному анализу сложных технических систем. Рассматриваются механические структуры, свойства которых влияют на поведение изделия в процессе сборки, ремонта и эксплуатации. Основным источником данных о деталях и механических связях между ними является гиперграф. Эта модель формализует многоместное отношение базирования. Она корректно описывает связность и взаимную координацию деталей, которые достигаются в процессе сборки изделия. При разработке сложных изделий в CAD-системах инженер часто допускает тяжелые проектные ошибки: перебазирование деталей и несеквенциальность сборочных операций. Предложены эффективные способы идентификации данных структурных дефектов. Показано, что свойство независимой собираемости можно представить как оператор замыкания на булеане множества деталей изделия. Образы этого оператора представляют собой связные координированные совокупности деталей, которые можно собрать независимо. Описана решеточная модель, которая представляет собой пространство состояний изделия в процессе сборки, разборки и декомпозиции на сборочные единицы. Решеточная модель служит источником разнообразной структурной информации о проекте. Предложены численные оценки мощности множества допустимых альтернатив в задачах выбора последовательности сборки и декомпозиции на сборочные единицы. Для многих технических операций (например, контроль, испытания и др.) необходимо монтировать все детали-операнды в одну сборочную единицу. Разработана простая формализация технических условий, требующих включения (исключения) деталей в сборочную единицу (из сборочной единицы). Приведена теорема, которая дает математическое описание декомпозиции изделия на сборочные единицы в точных решеточных терминах. Предложен способ численной оценки робастности механической структурыс ложной технической системы.

  4. Божко А.Н.
    Гиперграфовый подход в декомпозиции сложных технических систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1007-1022

    В статье рассматривается математическая модель декомпозиции сложного изделия на сборочные единицы. Это важная инженерная задача, которая влияет на организацию дискретного производства и его и оперативное управление. Приведен обзор современных подходов к математическому моделированию и автоматизированному синтезу декомпозиций. В них математическими моделями структур технических систем служат графы, сети, матрицы и др. Эти модели описывают механическую структуру как бинарное отношение на множестве элементов системы. Геометрическая координация и целостность машин и механических приборов в процессе изготовления достигаются при помощи базирования. В общем случае базирование может осуществляться относительно нескольких элементов одновременно. Поэтому оно представляет собой отношение переменной местности, которое не может быть корректно описано в терминах бинарных математических структур. Описана новая гиперграфовая модель механической структуры технической системы. Эта модель позволяет дать точную и лаконичную формализацию сборочных операций и процессов. Рассматриваются сборочные операции, которые выполняются двумя рабочими органами и заключаются в реализации механических связей. Такие операции называются когерентными и секвенциальными. Это преобладающий тип операций в современной промышленной практике. Показано, что математическим описанием такой операции является нормальное стягивание ребра гиперграфа. Последовательность стягиваний, трансформирующая гиперграф в точку, представляет собой математическую модель сборочного процесса. Приведены доказанные автором две важные теоремы о свойствах стягиваемых гиперграфов и подграфов. Введено понятие $s$-гиперграфа. $S$-гиперграфы являются корректными математическими моделями механических структур любых собираемых технических систем. Декомпозиция изделия на сборочные единицы поставлена как разрезание $s$-гиперграфа на $s$-подграфы. Задача разрезания описана в терминах дискретного математического программирования. Получены математические модели структурных, топологических и технологических ограничений. Предложены целевые функции, формализующие оптимальный выбор проектных решений в различных ситуациях. Разработанная математическая модель декомпозиции изделия является гибкой и открытой. Она допускает расширения, учитывающие особенности изделия и его производства.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.