Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
- Просмотров за год: 36.
-
Алгоритм метода по расчету границ качественных классов для количественных характеристик систем и по установлению взаимосвязей между характеристиками. Часть 1. Расчеты для двух качественных классов
Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 19-36Предложен метод расчета границ качественных классов для количественных характеристик систем любой природы. Метод позволяет установить: связи, не поддающиеся обнаружению при помощи корреляционного и регрессионного анализа; границы для качественных классов индикатора состояния систем и факторов, влияющих на это состояние; вклад факторов в степень «неприемлемости» значений индикатора; достаточность программы наблюдений за
факторами для описания причин «неприемлемости» значений индикатора.Ключевые слова: анализ связи, максимизация силы связи, индикаторы, факторы, границы качественных классов, вклад фактора.Просмотров за год: 1. Цитирований: 6 (РИНЦ). -
Алгоритм метода по расчету границ качественных классов для количественных характеристик систем и по установлению взаимосвязей между характеристиками. Часть 2. Расчеты для трех и более качественных классов
Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 37-54Метод расчета границ качественных классов для количественных характеристик систем любой природы адаптирован к поиску границ при наличии трех качественных классов. Адаптация метода позволила в дополнение к другим результатам определить границы между качественными классами при одновременной «неприемлемости» высоких и низких значений индикаторной характеристики состояния системы и одновременной «недопустимости» высоких и низких значений факторов, влияющих на систему.
Ключевые слова: анализ связи, максимизация силы связи, индикаторы, факторы, границы качественных классов, вклад фактора.Просмотров за год: 4. Цитирований: 1 (РИНЦ). -
Численное исследование взаимодействия ударной волны с подвижными вращающимися телами сложной формы
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 513-540Статья посвящена разработке вычислительного алгоритма метода декартовых сеток для исследования взаимодействия ударной волны с подвижными телами с кусочно-линейной границей. Интерес к подобным задачам связан с прямым численным моделированием течений двухфазных сред. Эффект формы частицы может иметь значение в задаче о диспергировании пылевого слоя за проходящей ударной волной. Экспериментальные данные по коэффициенту аэродинамического сопротивления несферических частиц практически отсутствуют.
Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величины шага, расчет динамики движения тела (определение силы и момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. На каждом шаге интегрирования по времени все ячейки делятся на два класса — внешние (внутри тела или пересекаются его границами) и внутренние (целиком заполнены газом). Решение уравнений Эйлера строится только во внутренних. Основная сложность заключается в расчете численного потока через ребра, общие для внутренних и внешних ячеек, пересекаемых подвижными границами тел. Для расчета этого потока используются двухволновое приближение при решении задачи Римана и схема Стигера–Уорминга. Представлено подробное описание вычислительного алгоритма.
Работоспособность алгоритма продемонстрирована на задаче о подъеме цилиндра с основанием в форме круга, эллипса и прямоугольника за проходящей ударной волной. Тест с круговым цилиндром рассмотрен во множестве статей, посвященных методам погруженной границы. Проведен качественный и количественный анализ траектории движения центра масс цилиндра на основании сравнения с результатами расчетов, представленными в восьми других работах. Для цилиндра с основанием в форме эллипса и прямоугольника получено удовлетворительное согласие по динамике его движения и вращения в сравнении с имеющимися немногочисленными литературными источниками. Для прямоугольника исследована сеточная сходимость результатов. Показано, что относительная погрешность выполнения закона сохранения суммарной массы газа в расчетной области убывает линейно при измельчении расчетной сетки.
Ключевые слова: ударная волна, метод декартовых сеток, уравнения Эйлера, подъем частицы, вращение частицы. -
Поиск связей между биологическими и физико-химическими характеристиками экосистемы Рыбинского водохранилища. Часть 1. Критерии неслучайности связи
Компьютерные исследования и моделирование, 2013, т. 5, № 1, с. 83-105На основании данных по содержанию пигментов фитопланктона, интенсивности флуоресценции проб и некоторыми физико-химическим характеристикам вод Рыбинского водохранилища проведен поиск связи между биологическими и физико-химическими характеристиками. Исследованы стандартные методы статистического анализа (корреляционный, регрессионный), методы описания связи между качественными классами характеристик, основанные на отклонении исследуемого распределения характеристик от независимого распределения. Предложен метод поиска оптимальных границ качественных классов по критерию максимума коэффициентов связи.
Ключевые слова: флуоресценция, фитопланктон, пигменты, хлорофилл, коэффициент Юлла, коэффициент Пирсона, поиск связи, Рыбинское водохранилище.Просмотров за год: 3. Цитирований: 6 (РИНЦ). -
Применение упрощенного неявного метода Эйлера для решения задач электрофизиологии
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 845-864Рассматривается упрощенный неявный метод Эйлера как альтернатива явному методу Эйлера, являющемуся наиболее распространенным в области численного решения уравнений, описывающих электрическую активность нервных клеток и кардиоцитов. Многие модели электрофизиологии имеют высокую степень жесткости, так как описывают динамику процессов с существенно разными характерными временами: миллисекундная деполяризации предшествует значительно более медленной гиперполяризации при формировании потенциала действия в электровозбудимых клетках. Оценка степени жесткости в работе проводится по формуле, не требующей вычисления собственных значений матрицы Якоби системы ОДУ. Эффективность численных методов сравнивается на примере типичных представителей из классов детальных и концептуальных моделей возбудимых клеток: модели Ходжкина–Хаксли для нейронов и Алиева–Панфилова для кардиоцитов. Сравнение эффективности численных методов проведено с использованием распространенных в биомедицинских задачах видов норм. Исследовано влияние степени жесткости моделей на величину ускорения при использовании упрощенного неявного метода: выигрыш во времени при высокой степени жесткости зафиксирован только для модели Ходжкина–Хаксли. Обсуждаются целесообразность применения простых методов и методов высоких порядков точности для решения задач электрофизиологии, а также устойчивость методов. Обсуждение позволяет прояснить вопрос о причинах отказа от использования высокоточных методов в пользу простых при проведении практических расчетов. На примере модели Ходжкина–Хаксли c различными степенями жесткости вычислены производные решения высших порядков и обнаружены их значительные максимальные абсолютные значения. Последние входят в формулы констант аппроксимации и, следовательно, нивелируют малость множителя, зависящего от порядка точности. Этот факт не позволяет считать погрешности численного метода малыми. Проведенный на качественном уровне анализ устойчивости явного метода Эйлера позволяет оценить вид функции параметров модели для описания границы области устойчивости. Описание границы области устойчивости, как правило, используется при априорном принятии решения о выборе величины шага численного интегрирования.
Ключевые слова: электрофизиология, детальные модели, концептуальные модели, жесткие системы, численные методы. -
Поиск связей между биологическими и физико-химическими характеристиками экосистемы Рыбинского водохранилища. Часть 2. Детерминационный анализ
Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 271-292Просмотров за год: 2. Цитирований: 3 (РИНЦ).На основании данных по содержанию пигментов фитопланктона, интенсивности флуоресценции проб и некоторым физико-химическим характеристикам вод Рыбинского водохранилища проведен поиск связи между биологическими и физико-химическими характеристиками. Исследованы методы описания связи между качественными классами характеристик, основанные на прогнозе качественных значений одной характеристики по качественным значениям другой. Найдены границы качественных классов исследуемых характеристик.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"