Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'вычислительные сети':
Найдено статей: 45
  1. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
  2. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 581-584
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
  4. Памяти А. С. Холодова
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 677-678
    Просмотров за год: 16.
  5. Симаков С.С.
    Современные методы математического моделирования кровотока c помощью осредненных моделей
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 581-604

    Изучение физиологических и патофизиологических процессов, связанных с системой кровообращения, является на сегодняшний день актуальной темой многих исследований. В данной работе рассматривается ряд подходов к математическому моделированию кровотока, основанных на пространственном осреднении и/или использующих стационарное приближение. Обсуждаются допущения и предположения, ограничивающие область применения моделей такого рода. Приводятся наиболее распространенные математические постановки задач и кратко описываются методы их численного решения. В первой части обсуждаются модели, основанные на полном пространственном осреднении и/или использующие стационарное приближение. Один из наиболее распространенных на сегодняшний день подходов состоит в проведении аналогий между течением вязкой несжимаемой жидкости в эластичных трубках и электрическим током в цепи. Такие модели используются не только сами по себе, но и как способ постановки граничных условий в моделях, учитывающих одномерную или трехмерную пространственную зависимость переменных. Динамические, полностью осредненные по пространству модели позволяют описывать динамику кровотока на достаточно больших временных интервалах, равных длительности десятков сердечных циклов и более. Далее рассмотрены стационарные модели основанные как на полностью осредненном, так и на двухмерном подходе. Такие модели могут быть использованы для моделирования кровотока в микроциркуляторном русле. Во второй части обсуждаются модели, основанные на одномерном осреднении параметров кровотока. Преимущество данного подхода также состоит в невысоких, по сравнению с трехмерным моделированием, требованиях к вычислительным ресурсам и возможности охвата всех достаточно крупных кровеносных сосудов в организме. Модели данного типа позволяют рассчитывать параметры кровотока в каждом сосуде сосудистой сети, включенной в модель. Структура и параметры такой сети могут быть заданы как на основе данных литературы, так и с помощью методов сегментации медицинских данных. Основными и весьма существенными предположениями при выводе одномерных уравнений из уравнений Навье – Стокса с помощью асимптотического анализа или их интегрирования по объему являются радиальная симметрия течения и постоянство формы профиля скорости в поперечном сечении. Существующие в настоящее время работы, посвященные валидации одномерных моделей, их сравнению между собой и с данными клинических исследований, позволяют говорить об успешности данного подхода и подтверждают возможность его использования в медицинской практике. Одномерные модели позволяют описывать такие динамические явления, как распространение пульсовой волны и звуки Короткова. В этом приближении могут быть учтены такие факторы, как действие на кровоток силы тяжести, действие на стенки сосудов силы сжатия мышц, регуляторные и ауторегуляторные эффекты.

    Просмотров за год: 62. Цитирований: 2 (РИНЦ).
  6. Холодов Я.А.
    Разработка сетевых вычислительных моделей для исследования нелинейных волновых процессов на графах
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 777-814

    В различных приложениях возникают задачи, моделируемые уравнениями в частных производных на графах (сетях, деревьях). Для исследования данных проблем и возникающих различных экстремальных ситуаций, для задач проектирования и оптимизации сетей различных типов в данной работе построена вычислительная модель, основанная на решении соответствующих краевых задач для нелинейных уравнений в частных производных гиперболического типа на графах (сетях, деревьях). В качестве приложений были выбраны три различные задачи, решаемые в рамках общего подхода сетевых вычислительных моделей. Первая — это моделирование движения транспортных потоков. При решении данной задачи использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений второго порядка. Проведенные расчеты и полученные результаты показали, что разработанная в рамках предложенного подхода модель хорошо воспроизводит реальную ситуацию на различных участках транспортной сети г. Москвы на значительных временных интервалах, а также может быть использована для выбора наиболее оптимальной стратегии организации дорожного движения в городе. Вторая — моделирование потоков данных в компьютерных сетях. В этой задаче потоки данных различных соединений в пакетной сети передачи данных моделировались в виде несмешивающихся потоков сплошной среды. Предложены концептуальная и математическая модели сети. Проведено численное моделирование в сравнении с системой имитационного моделирования сети NS-2. Полученные результаты показали, что в сравнении с пакетной моделью NS-2 разработанная нами потоковая модель демонстрирует значительную экономию вычислительных ресурсов, обеспечивая при этом хорошую степень подобия, и позволяет моделировать поведение сложных глобально распределенных IP-сетей передачи данных. Третья — моделирование распространения газовых примесей в вентиляционных сетях. Была разработана вычислительная математическая модель распространения мелкодисперсных или газовых примесей в вентиляционных сетях с использованием уравнений газовой динамики путем численного сопряжения областей разной размерности. Проведенные расчеты показали, что модель с хорошей точностью позволяет определять распределение газодинамических параметров в трубопроводной сети и решать задачи динамического управления вентиляцией.

  7. Билятдинов К.З., Досиков В.С., Меняйло В.В.
    Совершенствование метода парных сравнений для реализации в компьютерных программах, применяемых при оценке качества технических систем
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1125-1135

    Представлен усовершенствованный метод парных сравнений, в котором посредством табличных форм систематизированы правила логических выводов при сравнении технических систем и формулы проверочных значений. Для этого сформулированы рациональные правила логических выводов при парном сравнении систем. С целью проверки результатов оценки на непротиворечивость введены понятия количества баллов, набранных одной системой, и коэффициента качества систем, а также разработаны формулы расчетов. Для целей практического использования данного метода при разработке программ для ЭВМ предлагаются формализованные варианты взаимосвязанных таблиц: таблица обработки и систематизации экспертной информации, таблица возможных логических выводов по результатам сравнения заданного количества технических систем и таблица проверочных значений при использовании метода парных сравнений при оценке качества определенного количества технических систем. Таблицы позволяют более рационально организовать процедуры обработки информации и в значительной степени исклю- чить влияние ошибок при вводе данных на результаты оценки качества технических систем. Основной положительный эффект от внедрения усовершенствованного метода парных сравнений состоит в существенном сокращении времени и ресурсов на организацию работы с экспертами, обработку экспертной информации, а также на подготовку и проведение дистанционного опроса экспертов по сети Интернет или локальной вычислительной сети предприятия (организации) за счет рационального использования исходных данных о качестве оцениваемых систем. Предлагаемый усовершенствованный метод реали- зован в программах для ЭВМ, предназначенных для оценки эффективности и устойчивости больших технических систем.

  8. Коганов А.В., Сазонов А.Н.
    Критическая скорость роста вычислительных сетей для обеспечения неограниченной наработки на отказ
    Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 33-39

    Исследуется отказоустойчивость конечной вычислительной сети с произвольным графом, элементы которой имеют вероятность отказа и вероятность восстановления после отказа. Работа сети происходит по трехэтапным тактам (разрушение-восстановление-функционирование). Предлагается алгоритм наращивания сети в начале каждого такта ее работы. При этом граф увеличенной конфигурации сети формируется путем добавления новых экземпляров исходной сети и соединения их определенным образом с элементами старой конфигурации сети. Доказывается, что при достаточно быстром росте сеть имеет положительную вероятность неограниченной безотказной работы. Параметрическая оценка критической скорости роста сети имеет логарифмический порядок по числу тактов.

  9. В статье сформулирован обобщенный подход к выбору значений структурных параметров искусственной нейронной сети (ИНС) и объема обучающий выборки, основанный на принципе минимизации количества элементов структуры ИНС и объема обучающей выборки при ограничении на значение показателя качества работы нейросетевой модели динамики объекта. Реализован алгоритм выбора структурных параметров ИНС и построения нейросетевой модели.
    Проведена серия вычислительных экспериментов, демонстрирующая применимость алгоритма для построения моделей динамических объектов, в основе которых лежит нелинейная автокорреляционная нейронная сеть.

    Просмотров за год: 2. Цитирований: 8 (РИНЦ).
  10. В данной работе представлены результаты экспериментальной проверки некоторых вопросов, касающихся практического использования методов преодоления катастрофической забывчивости нейронных сетей. Проведено сравнение двух таких современных методов: метода эластичного закрепления весов (EWC, Elastic Weight Consolidation) и метода ослабления скоростей весов (WVA, Weight Velocity Attenuation). Разобраныих преимущества и недостатки в сравнении друг с другом. Показано, что метод эластичного закрепления весов (EWC) лучше применять в задачах, где требуется полностью сохранять выученные навыки на всех задачах в очереди обучения, а метод ослабления скоростей весов (WVA) больше подходит для задач последовательного обучения с сильно ограниченными вычислительными ресурсами или же когда требуется не точное сохранение всех навыков, а переиспользование репрезентаций и ускорение обучения от задачи к задаче. Проверено и подтверждено интуитивное предположение, что ослабление метода WVA необходимо применять к оптимизационному шагу, то есть к приращениям весов нейронной сети, а не к самому градиенту функции потерь, и это справедливо для любого градиентного оптимизационного метода, кроме простейшего стохастического градиентного спуска (SGD), для которого оптимизационный шаг и градиент функции потерь пропорциональны. Рассмотрен выбор оптимальной функции ослабления скоростей весов между гиперболической функцией и экспонентой. Показано, что гиперболическое убывание более предпочтительно, так как, несмотря на сравнимое качество при оптимальных значениях гиперпараметра метода WVA, оно более устойчиво к отклонениям гиперпараметра от оптимального значения (данный гиперпараметр в методе WVA обеспечивает баланс между сохранением старых навыков и обучением новой задаче). Приведены эмпирические наблюдения, которые подтверждают гипотезу о том, что оптимальное значение гиперпараметра не зависит от числа задач в очереди последовательного обучения. Следовательно, данный гиперпараметр может подбираться на небольшом числе задач, а использоваться — на более длинных последовательностях.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.