Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'вычислительные методы в физике':
Найдено статей: 53
  1. Плохотников К.Э.
    Проблема выбора решений при классическом формате описания молекулярной системы
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1573-1600

    Разработанные автором недавно численные методики расчета молекулярной системы на базе прямого решения уравнения Шрёдингера методом Монте-Карло показали огромную неопределенностьв выборе решений. С одной стороны, оказалось возможным построить множество новых решений, с другой стороны, резко обостриласьпроб лема их связывания с реальностью. В квантовомеханических расчетах ab initio проблема выбора решений стоит не так остро после перехода к классическому формату описания молекулярной системы в терминах потенциальной энергии, метода молекулярной динамики и пр. В данной работе исследуется проблема выбора решений при классическом формате описания молекулярной системы без учета квантовомеханических предпосылок. Как оказалось, проблема выбора решений при классическом формате описания молекулярной системы сводится к конкретной разметке конфигурационного пространства в виде набора стационарных точек и реконструкции соответствующей функции потенциальной энергии. В такой постановке решение проблемы выбора сводится к двум возможным физико-математическим задачам: по заданной функции потенциальной энергии найти все ее стационарные точки (прямая задача проблемы выбора), по заданному набору стационарных точек реконструироватьф ункцию потенциальной энергии (обратная задача проблемы выбора). В работе с помощью вычислительного эксперимента обсуждается прямая задача проблемы выбора на примере описания моноатомного кластера. Численно оцениваются число и форма локально равновесных (седловых) конфигураций бинарного потенциала. Вводится соответствующая мера по различению конфигураций в пространстве. Предлагается формат построения всей цепочки многочастичных вкладов в функцию потенциальной энергии: бинарный, трехчастичный и т.д., многочастичный потенциал максимальной частичности. Обсуждается и иллюстрируется бесконечное количество локально равновесных (седловых) конфигураций для максимально многочастичного потенциала. Предлагается методика вариации числа стационарных точек путем комбинирования многочастичных вкладов в функцию потенциальной энергии. Перечисленные выше результаты работы направлены на то, чтобы уменьшить тот огромный произвол выбора формы потенциала, который имеет место в настоящее время. Уменьшение произвола выбора выражается в том, что имеющиеся знания о вполне конкретном наборе стационарных точек согласуются с соответствующей формой функции потенциальной энергии.

  2. Митин Н.А., Орлов Ю.Н.
    Статистический анализ биграмм специализированных текстов
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 243-254

    Метод спектрального анализа стохастической матрицы применяется для построения индикатора, позволяющего определять тематику научных текстов без использования ключевых слов. Эта матрица представляет собой матрицу условных вероятностей биграмм, построенную по статистике используемых в тексте символов алфавита без учета пробелов, цифр и знаков препинания. Научные тексты классифицируются по взаимному расположению инвариантных подпространств матрицы условных вероятностей пар буквосочетаний. Индикатор разделения — величина косинуса угла между правым и левым собственными векторами, отвечающими максимальному и минимальному собственным значениям. Вычислительный алгоритм использует специальное представление параметра дихотомии, в качестве которого выступает интеграл от нормы квадрата резольвенты стохастической матрицы биграмм по окружности заданного радиуса в комплексной плоскости. Стремление интеграла в бесконечность свидетельствует о приближении контура интегрирования к собственному значению матрицы. В работе приведены типовые распределения индикатора идентификации специальностей. Для статистического анализа были проанализированы диссертации по основным 19 специальностям ВАК без учета классификации внутри специальности, по 20 текстов на специальность. Выяснилось, что эмпирические распределения косинуса угла для физико-математических и гуманитарных специальностей не имеют общего носителя, поэтому могут быть формально разделены по значению этого индикатора без ошибки. Хотя корпус текстов был не особенно большой, тем не менее при произвольном отборе диссертаций ошибка идентификации на уровне 2 % представляется очень хорошим результатом по сравнению с методами, основанными на семантическом анализе. Также выяснилось, что можно составить паттерн текста по каждой из специальностей в виде эталонной матрицы биграмм, по близости к которой в норме суммируемых функций можно безошибочно идентифицировать тематику написанного научного произведения, не используя ключевые слова. Предложенный метод можно использовать и в качестве сравнительного индикатора большей или меньшей строгости научного текста или как индикатор соответствия текста определенному научному уровню.

  3. Голубев В.И., Шевченко А.В., Петров И.Б.
    Повышение порядка точности сеточно-характеристического метода для задач двумерной линейной упругости с помощью схем операторного расщепления
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 899-910

    Сеточно-характеристический метод успешно применяется для решения различных гиперболических систем уравнений в частных производных (например, уравнения переноса, акустики, линейной упругости). Он позволяет корректно строить алгоритмы на контактных границах и границах области интегрирования, в определенной степени учитывать физику задачи (распространение разрывов вдоль характеристических поверхностей), обладает важнымдля рассматриваемых задач свойством монотонности. В случае двумерных и трехмерных задач используется процедура расщепления по пространственным направлениям, позволяющая решить исходную систему путем последовательного решения нескольких одномерных систем. На настоящий момент во множестве работ используются схемы до третьего порядка точности при решении одномерных задач и простейшие схемы расщепления, которые в общем случае не позволяют получить порядок точности по времени выше второго. Значительное развитие получило направление операторного расщепления, доказана возможность повышения порядка сходимости многомерных схем. Его особенностью является необходимость выполнения шага в обратном направлении по времени, что порождает сложности, например, для параболических задач.

    В настоящей работе схемы расщепления 3-го и 4-го порядка были применены непосредственно к решению двумерной гиперболической системы уравнений в частных производных линейной теории упругости. Это позволило повысить итоговый порядок сходимости расчетного алгоритма. В работе эмпирически оценена сходимость по нормам $L_1$ и $L_\infty$ с использованиемана литических решений определяющей системы достаточной степени гладкости. Для получения объективных результатов рассмотрены случаи продольных и поперечных плоских волн, распространяющихся как вдоль диагонали расчетной ячейки, так и не вдоль нее. Проведенные численные эксперименты подтверждают повышение точности метода и демонстрируют теоретически ожидаемый порядок сходимости. При этом увеличивается в 3 и в 4 раза время моделирования (для схем 3-го и 4-го порядка соответственно), но не возрастает потребление оперативной памяти. Предложенное усовершенствование вычислительного алгоритма сохраняет простоту его параллельной реализации на основе пространственной декомпозиции расчетной сетки.

Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.