Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Разработка системы ARM на базе блока обработки данных для вы- числений потока данных, реализованного на основе ИС
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 505-509Просмотров за год: 1.Современные масштабные научные проекты становятся все более информационно ёмкими, и обработка хранимых данных в режиме offline является невозможной. Требуется высокая пропускная способность при вычислениях или Вычисления Потока Данных, чтобы иметь возможность обрабатывать терабайты данных в секунду; такие данные не могут быть элементами длительного хранения. Общепринятые дата-центры, основанные на стандартном аппаратном обеспечении, являются дорогими и настроены на вычислительную мощность. Общая пропускная способность может быть увеличена с помощью массивного параллелизма, чаще всего за счет повышенной вычислительной мощности и потребления энергии. Система ARM на основе ИС (SoC) может решить проблему системы ввода/вывода и соотношение CPU, доступность и эффективность использования энергии, так как ARM SoC являются элементами массового производства и разработаны на основе эффективного использования энергии в мобильных устройствах. На данный момент такой элемент обработки находится в разработке и нацелен на пропускную способность ввода/вывода в 20 Гб/c и значительную вычислительную мощность. Рассмотрены возможности ввода/вывода потребления системы ARM на основе ИС вместе с вычислением производительности и тестами на пропускную способность ввода/вывода.
-
Характеристика тестирования центрального процессора на базе процессоров ARM
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 581-586Просмотров за год: 1.Большие научные проекты генерируют данные на всё более возрастающих скоростях. Типичные методы включают в себя хранение данных на диске, после незначительного фильтрования, а затем их обработку на больших компьютерных фермах. Производство данных достигло той точки, когда требуется обработка в режиме on-line, чтобы отфильтровать данные до управляемых размеров. Потенциальное решение включает в себя использование низко затратных процессоров ARM с маленькой мощностью в больших массивах для обеспечения массивного распараллеливания для вычислений потока данных (DSC). Главное преимущество в использовании систем на одном кристалле (SoCs) присуще самой философии этой разработки. Системы на микросхеме, прежде всего, используются в мобильных устройствах и, следовательно, потребляют меньше энергии при своей относительно хорошей производительности. Дано описание тестирования трех различных моделей процессоров ARM.
-
Описание тестирования памяти однокристальных систем на основе ARM
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 607-613Мощность вычислений традиционно находится в фокусе при разработке крупномасштабных вычислительных систем, в большинстве случаев такие проекты остаются плохо оборудованными и не могут эффективно справляться с ориентированными на высокую производительность рабочими нагрузками. Кроме того, стоимость и вопросы энергопотребления для крупномасштабных вычислительных систем всё ещё остаются источником беспокойства. Потенциальное решение включает в себя использование низко затратных процессоров ARM с маленькой мощностью в больших массивах в манере, которая обеспечивает массивное распараллеливание и высокую пропускную способность, производительность (относительно существующих крупномасштабных вычислительных проектов). Предоставление большего приоритета производительности и стоимости повышает значимость производительности оперативной памяти и оптимизации проекта до высокой производительности всей системы. Используя несколько эталонных тестов производительности оперативной памяти для оценки различных аспектов производительности RAM и кэш-памяти, мы даем описание производительности четырех различных моделей однокристальной системы на основе ARM, а именно Cortex-A9, Cortex-A7, Cortex-A15 r3p2 и Cortex-A15 r3p3. Затем мы обсуждаем значимость этих результатов для вычислений большого объема и потенциала для ARM- процессоров.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"