Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Сравнительный анализ методов конечных разностей и контрольного объема на примере решения нестационарной задачи естественной конвекции и теплового излучения в замкнутом кубе, заполненном диатермичной средой
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 567-578Просмотров за год: 13. Цитирований: 1 (РИНЦ).Проведен сравнительный анализ двух численных методик моделирования нестационарных режимов термогравитационной конвекции и теплового поверхностного излучения в замкнутой дифференциально обогреваемой кубической полости. Рассматриваемая область решения имела две изотермические противоположные вертикальные грани, остальные стенки являлись адиабатическими. Поверхности стенок считались диффузно-серыми, т. е. их направленные спектральные степень черноты и поглощательная способность не зависят ни от угла, ни от длины волны, но могут зависеть от температуры поверхности. Относительно отраженного излучения использовались два предположения: 1) отраженное излучение является диффузным, т. е. интенсивность отраженного излучения в любой точке границы поверхности равномерно распределена по всем направлениям; 2) отраженное излучение равномерно распределено по каждой поверхности замкнутой области решения. Математическая модель, сформулированная как в естественных переменных «скорость–давление», так и в преобразованных переменных «векторный потенциал–вектор завихренности», реализована численно методом контрольного объема и методом конечных разностей соответственно. Следует отметить, что анализ радиационного теплообмена проведен с использованием метода сальдо в варианте Поляка.
При решении краевой задачи в естественных переменных методом контрольного объема для аппроксимации конвективных слагаемых применялся степенной закон, для диффузионных слагаемых — центральные разности. Разностные уравнения движения и энергии разрешались на основе итерационного метода переменных направлений. Для поиска поля давления, согласованного с полем скорости, применялась процедура SIMPLE.
В случае метода конечных разностей и преобразованных переменных для аппроксимации конвективных слагаемых применялась монотонная схема Самарского, для диффузионных слагаемых — центральные разности. Уравнения параболического типа разрешались на основе локально-одномерной схемы Самарского. Дискретизация уравнений эллиптического типа для компонент векторного потенциала проводилась с использованием формул симметричной аппроксимации вторых производных. При этом полученное разностное уравнение разрешалось методом последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов.
В результате показано полное согласование полученных распределений скорости и температуры при различных значениях числа Рэлея, что отражает работоспособность представленных методик. Продемонстрирована эффективность использования преобразованных переменных и метода конечных разностей при решении класса нестационарных задач.
-
Метод обработки данных акустико-эмиссионного контроля для определения скорости и локации каждого сигнала
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1029-1040Акустико-эмиссионный метод неразрушающего контроля является одним из эффективных и экономичных способов обследования сосудов высокого давления для поиска в них скрытых дефектов (трещин, расслоений и др.), а также единственным методом, чувствительным к развивающимся дефектам. Скорость распространения звука в объекте контроля и ее адекватное определение в локационной схеме имеют важнейшее значение для точности локации источника акустической эмиссии. Предложенный в статье метод обработки данных акустической эмиссии позволяет определить координаты источника и наиболее вероятную скорость для каждого сигнала. Метод включает в себя предварительную фильтрацию данных по амплитуде, по разности времен прихода, исключение электромагнитных помех. Далее к ним применяется комплекс численных методов для решения получившихся нелинейных уравнений, в частности метод Ньютона–Канторовича и общий итерационный процесс. Скорость распространения сигнала от одного источника принимается постоянной во всех направлениях. В качестве начального приближения берется центр тяжести треугольника, образованного первыми тремя датчиками, зафиксировавшими сигнал. Разработанный метод имеет важное практическое применение, и в статье приведен пример его апробации при калибровке акустико- эмиссионной системы на производственном объекте (абсорбере очистки углеводородного газа). Описаны критерии предварительной фильтрации данных. Полученные локации хорошо согласуются с местоположениями генерации сигналов, а вычисленные скорости четко отражают разделение акустической волны на волны Лэмба и Рэлея благодаря разноудаленности источников сигналов от датчиков. В статье построен график соответствия усредненной скорости сигнала и расстояния от его источника до ближайшего датчика. Основным достоинством разработанного метода можно считать его способность вычислять и отображать на общей схеме объекта местоположение сигналов, имеющих разные скорости, а не задавать единую скорость для всех сигналов акустической эмиссии в рамках одного расчета. Это позволяет увеличить степень свободы при вычислениях и тем самым увеличить их точность.
Ключевые слова: акустическая эмиссия, метод Ньютона – Канторовича, калибровка, локация, метод итераций, дефекты. -
О построении и свойствах WENO-схем пятого, седьмого, девятого, одиннадцатого и тринадцатого порядков. Часть 2. Численные примеры
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 885-910Просмотров за год: 13.Схемы WENO (взвешенные, существенно не осциллирующие схемы) в настоящее время имеют достаточно обширную область применения для аппроксимации разрывных решений в уравнениях в частных производных. Данные схемы применялись для прямого численного моделирования и моделирования динамики больших вихрей в задачах газовой динамики, задачах МГД и даже для задач нейтронной кинетики. Данная работа посвящена уточнению некоторых характеристик схем WENO и численному моделированию характерных задач, которые позволяют сделать выводы обоб ласти применимости данных схем. Первая часть работы содержала результаты по доказательству свойств аппроксимации, устойчивости и сходимости схем WENO5, WENO7, WENO9, WENO11 и WENO13. Во второй части работы проводится модифицированный волновой анализ, позволяющий сделать вывод о дисперсионных и диссипативных свойствах схем. Далее, проводится численное моделирование ряда характерных задач для уравнений гиперболического типа: уравнений переноса (одномерное и двухмерное), уравнения Хопфа, уравнения Бюргерса (с малой диссипацией) и уравнения динамики невязкого газа (одномерное и двухмерное). Для каждой из задач, подразумевающих гладкое решение, приведено практическое вычисление порядка аппроксимации с помощью метода Рунге. Во всех задачах проверяются выводы, сделанные в первой части работы по влиянию шага по времени на нелинейные свойства схем. В частности, для уравнений переноса разрывной функции и уравнений Хопфа показано, что невыполнение указанных рекомендаций ведет вначале к росту вариации решения, а затем включается диссипативный нелинейный механизм схемы и аппроксимация падает. Практически подтверждены выводы первой части по условиям устойчивости. Для одномерного уравнения Бюргерса проведено моделирование затухания случайно распределенных начальных условий в периодической области и выполнено сопоставление со спектральным методом. Делается вывод о применимости схем WENO7–WENO13 для прямого численного моделирования турбулентности. В конце демонстрируются возможности схем на начально-краевых задачах для уравнений динамики невязкого газа: неустойчивость Рэлея–Тейлора и отражение ударной волны от клина с образованием сложной конфигурации ударных волн и разрывов.
-
Распространение волн Рэлея при косом ударе метеорита о поверхность земли и их воздействие на здания и сооружения
Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 981-992Просмотров за год: 3. Цитирований: 2 (РИНЦ).В данной работе решается динамическая задача теории упругости о совместном нормальном и касательном воздействии на полупространство. С помощью этой задачи моделируется процесс наклонного падения метеорита на земную поверхность. Проведены исследования и расчеты поверхностной волны Рэлея. Полученное решение использовано в качестве внешнего воздействия на высотное здание, находящееся на некотором расстоянии от места падения для оценки безопасности и устойчивости его конструкции. Проведены численные эксперименты на основе конечно-элементного программного комплекса STARK ES. Рассчитаны амплитуды колебаний верхних этажей выбранного объекта при таком динамическом воздействии. Также проведено ихсистема тическое сравнение с результатами расчета при колебаниях основания, соответствующихст андартной акселерограмме 8-балльного землетрясения.
-
О применении формулы Рэлея на основе интегральных выражений Кирхгофа к задачам георазведки
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 761-771В данной работе рассматриваются формулы Рэлея, полученные из интегральных формул Кирхгофа, которые в дальнейшем могут быть применены для получения миграционных изображений. Актуальность проведенных в работе исследований обусловлена распространенностью применения миграции в интересах сейсмической разведки нефти и газа. Предлагаемый подход позволит существенно повысить качество сейсмической разведки в сложных случаях, таких как вечная мерзлота и шельфовые зоны южных и северных морей. Особенностью работы является использование упругого приближения для описания динамического поведения геологической среды, в отличие от широко распространенного акустического приближения. Сложность применения системы уравнений, описывающей состояние линейно-упругой среды, для получения формул Рэлея и алгоритмов на их основе возникает из-за значительного роста количества вычислений, математической и аналитической сложности итоговых алгоритмов по сравнению со случаем акустической среды. Поэтому в промышленной сейсморазведке в настоящий момент не используют алгоритмы миграции для случая упругих волн, что создает определенные трудности, так как акустическое приближение описывает только продольные сейсмические волны в геологических средах. В данной статье представлены итоговые аналитические выражения, которые можно использовать для разработки программных комплексов, используя описание упругих сейсмических волн (продольных и поперечных), тем самым охватывая весь диапазон сейсмических волн (продольных отраженных PP-волн, продольных отраженных SP-волн, поперечных отраженных PS-волн и поперечных отраженных SS-волн). Также в работе приведены результаты сравнения численных решений, полученных на основе формул Рэлея, с численными решениями, полученными сеточно-характеристическим методом. Ценность такого сравнения обусловлена тем, что метод на основе интегралов Рэлея основан на аналитических выражениях, в то время как сеточно-характеристический метод является методом численного интегрирования решения по расчетной сетке. В проведенном сравнении рассматривались различные типы источников: модель точечного источника, широко используемого в морской и наземной сейсморазведке, и модель плоской волны, которую также иногда применяют в полевых исследованиях.
Ключевые слова: сейсморазведка, углеводороды, формула Кирхгофа, акустические волны, упругие волны, численное моделирование.Просмотров за год: 11.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"