Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'волновое уравнение':
Найдено статей: 34
  1. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 139-142
    Просмотров за год: 2.
  2. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 5-7
    Просмотров за год: 27.
  3. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 363-365
    Просмотров за год: 20.
  4. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 689-692
  5. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 773-776
  6. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 939-942
  7. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 999-1002
  8. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1415-1418
  9. Борисов А.В., Трифонов А.Ю., Шаповалов А.В.
    Квазиклассические решения уравнения Гросса–Питаевского, локализованные в окрестности окружности
    Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 359-365

    В квазиклассическом приближении показано, что для конденсата Бозе–Эйнштейна, моделируемого уравнением Гросса–Питаевского с притягивающей нелинейностью при специальной конфигурации внешнего поля магнитной ловушки, возможны неколлапсирующие солитоноподобные волновые функции.

    Цитирований: 1 (РИНЦ).
  10. Бреев А.И., Шаповалов А.В., Козлов А.В.
    Интегрирование релятивистских волновых уравнений в космологической модели Бъянки IX
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 433-443

    В работе рассматривается интегрирование уравнений Клейна–Гордона и Дирака в космологической модели Бъянки IX. При помощи метода некоммутативного интегрирования дифференциальных уравнений найдены новые точные решения для осесимметричной модели.

    Метод некоммутативного интегрирования в данной задаче основан на использовании специального бесконечномерного голоморфного представления группы вращений, которое строится по невырожденной орбите коприсоединенного представления и комплексной поляризации невырожденного ковектора. Матричные элементы данного представления образуют полный и ортогональный набор и позволяют ввести обобщенное преобразование Фурье. Оператор Казимира группы вращений при этом преобразовании переходит в константу, а операторы симметрии, порожденные векторными полями Киллинга, — в линейные дифференциальные операторы первого порядка от одной зависимой переменной. Таким образом, релятивистские волновые уравнения на группе вращений допускают некоммутативную редукцию к обыкновенному дифференциальному уравнению. В отличие от широко известного метода разделения переменных метод некоммутативного интегрирования учитывает неабелеву алгебру операторов симметрии и дает решения, несущие информацию о некоммутативной симметрии задачи. Такие решения могут быть полезны для учета вакуумных квантовых эффектов и расчета конечных функций Грина методом раздвижки точек.

    В работе для осесимметричной модели проведено сравнение полученных решений с известными, которые получаются методом разделения переменных. Показано, что некоммутативные решения выражаются через элементарные функции, тогда как известные решения определяются функцией Вигнера. Причем некоммутативно редуцированное уравнение Клейна–Гордона для осесимметричной модели совпадает с уравнением, редуцированным методом разделения переменных. А некоммутативно редуцированное уравнение Дирака эквивалентно редуцированному уравнению, полученному методом разделения переменных.

    Просмотров за год: 5.
Страницы: следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.