Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'вихревая структура':
Найдено статей: 14
  1. Садин Д.В.
    Анализ диссипативных свойств гибридного метода крупных частиц для структурно сложных течений газа
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 757-772

    Изучаются вычислительные свойства параметрического класса конечно-объемных схем с настраиваемыми диссипативными свойствами с расщеплением по физическим процессам на лагранжев, эйлеров и заключительный этапы (гибридный метод крупных частиц). Метод обладает вторым порядком аппроксимации по пространству и времени на гладких решениях. Регуляризация численного решения на лагранжевом этапе осуществляется нелинейной коррекцией искусственной вязкости, величина которой, независимо от разрешения сетки, стремится к нулю вне зоны разрывови экстремумовв решении. На эйлеровом и заключительном этапе вначале реконструируются примитивные переменные (плотность, скорость и полная энергия) путем взвешенной ограничителем потоков аддитивной комбинации противопоточной и центральной аппроксимаций. Затем из них формируются численные дивергентные потоки. При этом выполняются дискретные аналоги законов сохранения.

    Выполнен анализ диссипативных свойств метода с использованием известных ограничителей вязкости и потоков, а также их линейной комбинации. Разрешающая способность схемы и качество численных решений продемонстрированы на примерах двумерных тестов с обтеканием ступеньки потоком газа с числами Маха 3, 10 и 20, двойным маховским отражением сильной ударной волны и с импульсным сжатием газа. Изучено влияние схемной вязкости метода на численное воспроизведение неустойчивости на контактных поверхностях газов. Установлено, что уменьшение уровня диссипативных свойств схемы в задаче с импульсным сжатием газа приводит к разрушению симметричного решения и формированию хаотической неустойчивости на контактной поверхности.

    Численные решения сопоставлены с результатами других авторов, полученных по схемам повышенного порядка аппроксимации: КАБАРЕ, HLLC (Harten Lax van Leer Contact), CFLFh (CFLF hybrid scheme), JT (centered scheme with limiter by Jiang and Tadmor), PPM (Piecewise Parabolic Method), WENO5 (weighted essentially non-oscillatory scheme), RKGD (Runge–Kutta Discontinuous Galerkin), с гибридной взвешенной нелинейной интерполяцией CCSSR-HW4 и CCSSR-HW6. К достоинствам гибридного метода крупных частиц относятся расширенные возможности решения задач гиперболического и смешанного типов, хорошее соотношение диссипативных и дисперсионных свойств, сочетание алгоритмической простоты и высокой разрешающей способности в задачах со сложной ударно-волновой структурой, развитием неустойчивости и вихреобразованием на контактных границах.

  2. Предложен алгоритм идентификации параметров плоской вихревой структуры по информации о скорости теченияв конечном (малом) наборе опорных точек. Алгоритм основан на использовании модельной системы точечных вихрей и минимизации в пространстве ее параметров целевого функционала, оценивающего близость модельного и известного наборов векторов скорости. Для численной реализации используются модифицированный метод градиентного спуска с управлением шагом, аппроксимации производных конечными разностями, аналитическое выражение для поля скорости, индуцируемое модельной системой. Проведен численный экспериментальный анализ работы алгоритма на тестовых течениях: одного и системы нескольких точечных вихрей, вихря Рэнкина и диполя Ламба. Используемые дляид ентификации векторы скорости задавались в случайно распределенных наборах опорных точек (от 3 до 200) согласно известным аналитическим выражениям для тестовых полей скорости. В результате вычислений показано: алгоритм сходится к искомому минимуму из широкой области начальных приближений; алгоритм сходится во всех случаях когда опорные точки лежат в областях, где линии тока тестовой и модельной систем топологически эквивалентны; если системы топологически не эквивалентны, то доля удачных расчетов снижается, но сходимость алгоритма также может иметь место; координаты найденных в результате сходимости алгоритма вихрей модельной системы близки к центрам вихрей тестовых конфигураций, а во многих случаях и значения их интенсивностей; сходимость алгоритма в большей степени зависит от расположения, чем от количества используемых при идентификации векторов. Результаты исследования позволяют рекомендовать предложенный алгоритм для анализа плоских вихревых структур, у которых линии тока топологически близки траекториям частиц в поле скорости систем точечных вихрей.

  3. Исследуется устойчивость пространственно-периодических диссипативных структур изотермической электроконвекции в плоском слое вязкой несжимаемой слабопроводящей жидкости с униполярной инжекционной проводимостью.

    Просмотров за год: 1. Цитирований: 1 (РИНЦ).
  4. Васильев Е.В., Пержу А.В., Король А.О., Капитан Д.Ю., Рыбин А.Е., Солдатов К.С., Капитан В.Ю.
    Численное моделирование двумерных магнитных скирмионных структур
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1051-1061

    В данной работе с помощью алгоритма Метрополиса авторами были изучены магнитные системы, в которых из-за конкуренции между прямым гейзенберговским обменом и взаимодействием Дзялошинского–Мория возникают магнитные вихревые структуры — скирмионы.

    В статье рассматриваются условия зарождения и стабильного существования магнитных скирмионов в двумерных магнитных пленках в рамках классической модели Гейзенберга. Изучена термическая стабильность скирмионов в магнитной пленке. Были рассмотрены процессы формирования различных состояний в изучаемой системе при варьировании величины внешнего магнитного поля, выделены различные фазы, в которые переходит система спинов Гейзенберга. Было выделено семь фаз: парамагнитная, спиральная, лабиринтная, спираль-скирмионная, скирмионная, скирмион-ферромагнитная и ферромагнитная фазы, подробный анализ конфигураций которых приводится в статье.

    Построены две фазовые диаграммы: на первой показано поведение системы при постоянном $D$ в зависимости от величин внешнего магнитного поля и температуры: $(T, B)$, на второй — изменение кон- фигураций системы при постоянной температуре $T$ в зависимости от величины взаимодействия Дзялошинского–Мории и внешнего магнитного поля: $(D, B)$.

    Полученные в ходе численных экспериментов данные будут использованы в дальнейших исследованиях при определении модельных параметров системы для формирования стабильного скирмионного состояния и разработки методов контроля скирмионов в магнитной пленке.

Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.