Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
- Просмотров за год: 1.
- Просмотров за год: 1.
-
Глобальный бифуркационный анализ рациональной системы Холлинга
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 537-545Просмотров за год: 11.В статье рассматривается квартичное семейство планарных векторных полей, соответствующее рациональной системе Холлинга, которая моделирует динамику популяций типа «хищник–жертва» в данной экологической или биомедицинской системе и которая обобщает классическую систему Лотки–Вольтерры. В простейших математических моделях изменение концентрации жертв в единицу времени в расчете на одного хищника, которое характеризуется так называемой функцией отклика, прямо пропорционально концентрации жертв, т. е. функция отклика в этих моделях линейная. Это означает, что в системе нет насыщения хищников, когда количество жертв достаточно велико. Однако было бы более реалистично рассматривать нелинейные и ограниченные функции отклика, и в литературе действительно используются различные виды таких функций для моделирования отклика хищников. После алгебраических преобразований рациональную систему Холлинга можно записать в виде квартичной динамической системы. Для исследования характера и расположения особых точек в фазовой плоскости этой системы используется разработанный нами метод, смысл которого состоит в том, чтобы получить простейшую (хорошо известную) систему путем обращения в нуль некоторых параметров (обычно параметров, поворачивающих поле) исходной системы, а затем последовательно вводить эти параметры, изучая динамику особых точек (как конечных, так и бесконечно удаленных) в фазовой плоскости. Используя полученную информацию об особых точках и применяя наш геометрический подход к качественному анализу, мы изучаем бифуркации предельных циклов квартичной системы. Чтобы контролировать все бифуркации предельных циклов, особенно бифуркации кратных предельных циклов, необходимо знать свойства и комбинировать действия всех параметров, поворачивающих векторное поле системы. Это может быть сделано с помощью принципа окончания Уинтнера–Перко, согласно которому максимальное однопараметрическое семейство кратных предельных циклов заканчивается либо в особой точке, которая, как правило, имеет ту же кратность (цикличность), либо на сепаратрисном цикле, который также, как правило, имеет ту же кратность (цикличность). Применяя этот принцип, мы доказываем, что квадричная система (и соответствующая рациональная система Холлинга) может иметь не более двух предельных циклов, окружающих одну особую точку.
-
Глобальный бифуркационный анализ квартичной модели «хищник–жертва»
Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 125-134Просмотров за год: 5. Цитирований: 3 (РИНЦ).Мы проводим глобальный бифуркационный анализ квартичной модели типа «хищник–жертва». В частности, исследуя глобальные бифуркации особых точек и предельных циклов, мы доказываем, что соответствующая динамическая система имеет не более двух предельных циклов.
-
Классификация динамических режимов переключения намагниченности в трехслойной ферромагнитной структуре в зависимости от спин-поляризованного тока инжекции и внешнего магнитного поля. I. Продольная анизотропия
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 605-620Просмотров за год: 2. Цитирований: 6 (РИНЦ).В приближении однородной намагниченности построена математическая модель ячейки памяти MRAM c осью анизотропии, расположенной в плоскости запоминающего ферромагнитного слоя ячейки и ориентированной параллельно ее краю (продольная анизотропия). Модель базируется на уравнении Ландау–Лифшица–Гильберта с токовым членом в форме Слончевского–Берже. Выведена система обыкновенных дифференциальных уравнений в нормальном виде, описывающая динамику намагниченности в трехслойной вентильной структуре Co/Cu/Co в зависимости от величины тока инжекции и внешнего магнитного поля, параллельного оси анизотропии магнитных слоев. Показано, что при любых токах и полях система имеет два основных состояния равновесия, расположенных на оси, совпадающей с осью анизотропии. Проведен анализ устойчивости этих состояний равновесия. Выписаны уравнения для определения дополнительных состояний равновесия. Показано, что в зависимости от величины внешнего магнитного поля и тока инжекции система может иметь всего два, четыре и шесть симметричных относительно оси анизотропии положений равновесия. Построены бифуркационные диаграммы, характеризующие основные типы динамики вектора намагниченности свободного слоя. Проведена классификация фазовых портретов на единичной сфере в зависимости от управляющих параметров (тока и поля). Изучены особенности динамики вектора намагниченности в каждой из характерных областей бифуркационной диаграммы и численно построены траектории переключения. Для построения траекторий использовался метод Рунге–Кутты. Найдены параметры, при которых существуют неустойчивые и устойчивые предельные циклы. Установлено, что неустойчивые предельные циклы существуют вокруг основного устойчивого равновесия на оси, совпадающей с осью анизотропии, а устойчивые циклы — вокруг неустойчивых дополнительных равновесий. Граница области существования устойчивых предельных циклов рассчитана численно. Обнаружены новые типы динамики под влиянием внешнего магнитного поля и спин-поляризованного тока инжекции: случайное и неполное переключение намагниченности. Аналитически определены значения пороговых токов переключения в зависимости от внешнего магнитного поля. Численно выполнены оценки времени переключения в зависимости от величин управляющих параметров.
-
Глобальные бифуркации предельных циклов полиномиальной системы Эйлера–Лагранжа–Льенара
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 693-705В данной статье, используя наш бифуркационно-геометрический подход, мы изучаем глобальную динамику и решаем проблему о максимальном числе и распределении предельных циклов (автоколебательных режимов, соответствующих состояниям динамического равновесия) в планарной полиномиальной механической системе типа Эйлера–Лагранжа–Льенара. Такие системы используются также для моделирования электротехнических, экологических, биомедицинских и других систем, что значительно облегчает исследование соответствующих реальных процессов и систем со сложной внутренней динамикой. Они используется, в частности, в механических системах с демпфированием и жесткостью. Существует ряд примеров технических систем, которые описываются с помощью квадратичного демпфирования в динамических моделях второго порядка. В робототехнике, например, квадратичное демпфирование появляется при управлении с прямой связью и в нелинейных устройствах, таких как приводы с переменным импедансом (сопротивлением). Приводы с переменным сопротивлением представляют особый интерес для совместной робототехники. Для исследования характера и расположения особых точек в фазовой плоскости полиномиальной системы Эйлера–Лагранжа–Льенара используется разработанный нами метод, смысл которого состоит в том, чтобы получить простейшую (хорошо известную) систему путем обращения в нуль некоторых параметров (обычно параметров, поворачивающих поле) исходной системы, а затем последовательно вводить эти параметры, изучая динамику особых точек в фазовой плоскости. Для исследования особых точек системы мы используем классические теоремы Пуанкаре об индексе, а также наш оригинальный геометрический подход, основанный на применении метода двух изоклин Еругина, что особенно эффективно при исследовании бесконечно удаленных особых точек. Используя полученную информацию об особых точках и применяя канонические системы с параметрами, поворачивающими векторное поле, а также используя геометрические свойства спиралей, заполняющих внутренние и внешние области предельных циклов, и применяя наш геометрический подход к качественному анализу, мы изучаем бифуркации предельных циклов рассматриваемой системы.
-
Классификация динамических режимов переключения намагниченности в трехслойной ферромагнитной структуре в зависимости от спин-поляризованного тока инжекции и внешнего магнитного поля. II. Перпендикулярная анизотропия
Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 755-764Просмотров за год: 4. Цитирований: 1 (РИНЦ).В приближении однородной намагниченности построена математическая модель трехслойной ячейки памяти MRAM c осью анизотропии, расположенной перпендикулярно запоминающему ферромагнитному слою ячейки (перпендикулярная анизотропия). Предполагается, что первоначально намагниченность свободного слоя ячейки ориентирована вдоль оси анизотропии и соответствует состоянию «нуль». Одновременное мгновенное включение спин-поляризованного тока и магнитного поля воздействует на намагниченность свободного слоя и может перевести ее в противоположное положение, соответствующее состоянию «единица». Математическое описание эффекта основано на классическом векторном уравнении Ландау–Лифшица с диссипативным членом в форме Гильберта. В нашей модели учтены взаимодействия намагниченности с внешним магнитным полем и эффективными полями анизотропии и размагничивания, а также с током инжекции в форме Слончевского–Берже. Выведена система обыкновенных дифференциальных уравнений, описывающая динамику намагниченности в трехслойной вентильной структуре Co/Cu/Co в зависимости от управляющих параметров: величины тока инжекции и внешнего магнитного поля, параллельного оси анизотропии магнитных слоев. Показано, что при любых токах и полях система имеет два основных состояния равновесия, расположенных на оси, совпадающей с осью анизотропии. Установлено, что в данной системе, в отличие от системы с продольной анизотропией, дополнительные состояния равновесия отсутствуют. Проведен анализ устойчивости основных состояний равновесия по первому приближению. Построены бифуркационные диаграммы, характеризующие типы динамики вектора намагниченности свободного слоя. Проведена классификация фазовых портретов на единичной сфере в зависимости от управляющих параметров (тока и поля). Изучены особенности динамики вектора намагниченности в каждой из характерных областей бифуркационной диаграммы и численно, методом Рунге–Кутты, построены траектории переключения. Найдены комбинации управляющих параметров, при которых переключение невозможно. Найдены области существования устойчивых и неустойчивых предельных циклов системы. Аналитически определены значения пороговых токов переключения в зависимости от внешнего магнитного поля. Проведено сравнение значений порогового тока в моделях с продольной и перпендикулярной анизотропией при нулевом магнитном поле и показано, что в модели с перпендикулярной анизотропией ток переключения почти на порядок ниже, чем в модели с продольной анизотропией.
-
Исследование состояний равновесия второго рода уравнения Курамото–Сивашинского с однородными условиями Неймана
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 59-69Просмотров за год: 27.Рассматривается известное эволюционное уравнение математической физики, которое в современной математической литературе принято называть уравнением Курамото–Сивашинского. В данной работе это уравнение изучается в первоначальной редакции авторов работ, где оно было предложено, вместе с однородными краевыми условиями Неймана. Изучен вопрос о существовании и устойчивости локальных аттракторов, сформированных пространственно-неоднородными решениями изучаемой краевой задачи. Данный вопрос стал особенно актуален в последнее время в связи с моделированием процесса формирования наноструктур на поверхности полупроводников под воздействием потока ионов или лазерного излучения.
Изучен вопрос о существовании и устойчивости состояний равновесия второго рода двумя различными способами. В первом из них использован метод Галёркина. Второй подход основан на использовании строго обоснованных методов теории динамических систем с бесконечномерным фазовым пространством: метод интегральных многообразий, теория нормальных форм, асимптотические методы.
В работе в целом повторен подход из известной работы Д. Армбрустера, Д. Гукенхеймера, Ф.Холмса, где использован подход, основанный на применении метода Галёркина. Результаты такого анализа расширены и развиты. Использование возможностей современных компьютеров помогло существенно дополнить анализ этой задачи. В частности, найти все решения в четырех- и пятичленных аппроксимациях Галёркина, которые для изучаемой краевой задачи следует интерпретировать как состояния равновесия второго рода. Также дан анализ их устойчивости в смысле определения А. М. Ляпунова.
В данной работе проведено сравнение результатов, полученных с использованием метода Галёркина с результатами бифуркационного анализа краевой задачи на базе применения методов качественного анализа бесконечномерных динамических систем. Сравнение двух вариантов результатов показало некоторую ограниченность возможностей использования метода Галёркина.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"