Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'безмасштабная сеть':
Найдено статей: 7
  1. Евин И.А.
    Введение в теорию сложных сетей
    Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 121-141

    В последние годы сложилось новое направление изучения сложных систем, рассматривающее их как сетевые структуры. Узлы в таких сетях представляют собой элементы этих сложных систем, а связи между узлами – взаимодействия между элементами. Эти исследования имеют дело с реальными системами, такими как биологические (метаболические сети клеток, функциональные сети мозга, экологические системы), технические (Интернет, WWW, сети компаний сотовой связи, сети электростанций), социальные (сети научного сотрудничества, сети актеров кино, сети знакомств). Оказалось, что эти сети имеют более сложную архитектуру, чем классические случайные сети. В предлагаемом обзоре даются основные понятия теории сложных сетей, а также кратко описаны основные направления изучения реальных сетевых структур.

    Просмотров за год: 53. Цитирований: 107 (РИНЦ).
  2. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1261-1264
  3. Евин И.А., Кобляков А.А., Савриков Д.В., Шувалов Н.Д.
    Когнитивные сети
    Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 231-239

    Традиционная классификация сложных сетей на биологические, технологические и социальные является неполной, поскольку существует огромное разнообразие продуктов художественного творчества, структуру которых также можно представить в виде сетей. В статье дан обзор исследований сложных сетей, моделирующих некоторые литературные, музыкальные и живописные произведения. Соответствующие сети предложено называть когнитивными. Обсуждаются основные направления изучения таких сетевых структур.

    Просмотров за год: 6. Цитирований: 16 (РИНЦ).
  4. Евин И.А., Комаров В.В., Попова М.С., Марченко Д.К., Самсонова А.Ю.
    Дорожные сети городов
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 775-786

    Улично-дорожная сеть является основой инфраструктуры любой урбанистической территории. В данной статье сравниваются структурные характеристики (коэффициент сетчатости, коэффициент кластеризации) дорожных сетей центра Москвы (старая Москва), сформированных в результате самоорганизации, и сети дорог вблизи Ленинского проспекта (послевоенная Москва), которая формировалась в процессе централизованного планирования. Данные для построения дорожных сетей в виде первичных графов взяты из интернет-ресурса OpenStreetMap, позволяющего точно идентифицировать координаты перекрестков. По вычисленным характеристикам в зарубежных публикациях найдены города, дорожные сети которых имеют сходные с этими двумя районами Москвы структуры. С учетом двойственного представления дорожных сетей центров Москвы и Петербурга, изучались информационно-когнитивные свойства навигации по этим туристическим районам двух столиц. При построении двойственного графа исследуемых районов не принимались во внимание различия в типах дорог (одностороннее или двусторонне движение и т. п.). То есть построенные двойственные графы являются неориентированным. Поскольку дорожные сети в двойственном представлении описываются степенным законом распределения вершин по числу ребер (являются безмасштабными сетями), вычислены показатели степеней этих распределений. Показано, что информационная сложность двойственного графа центра Москвы превышает когнитивный порог в 8.1 бит, а этот же показатель для центра Петербурга ниже этого порога. Это объясняется тем, что дорожная сеть центра Петербурга создавалась на основе планирования и потому более проста для навигации. В заключение, с использованием методов статистической механики (метод расчета статистических сумм) для дорожных сетей некоторых российских городов, вычислялась энтропия Гиббса. Обнаружено, что с ростом размеров дорожных сетей их энтропия уменьшается. Обсуждаются задачи изучения эволюции сетей городской инфраструктуры различной природы (сети общественного транспорта, снабжения, коммуникации и т. д.), что позволит более глубоко исследовать и понять фундаментальные закономерности процесса урбанизации.

    Просмотров за год: 3.
  5. Петров А.П., Подлипская О.Г., Подлипский О.К.
    Моделирование динамики политических позиций: плотность сети и шансы меньшинства
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 785-796

    Некоторые информационные противоборства завершаются тем, что практически все общество принимает одну точку зрения, другие приводят к тому, что партия большинства получает лишь небольшой перевес над партией меньшинства. Возникает вопрос о том, какие сетевые характеристики общества способствуют тому, чтобы меньшинство могло сохранять некоторую значимую численность. С учетом того, что некоторые общества являются более связными, чем другие, в смысле того, что они имеют более высокую плотность социальных связей, данный вопрос конкретизируется следующим образом: какой эффект плотности социальных связей оказывается на шансы меньшинства сохранить не слишком малую численность? Способствует ли более высокая плотность более полной победе большинства или, наоборот, шансам меньшинства? Для изучения этого вопроса рассматривается информационное противоборство двух партий, называемых левой и правой, в населении, представленном в виде сети, узлами которой являются индивиды, а связи соответствуют их знакомству и описывают взаимное влияние. В каждый из дискретных моментов времени каждый индивид принимает решение о поддержке той или иной партии, основываясь на своей установке, т.е. предрасположенности к левой либо правой партии, и учитывая влияние своих соседей по сети. Влияние состоит в том, что каждый сосед с определенной вероятностью посылает данному индивиду сигнал в пользу той партии, которую сам в данный момент поддерживает. Если сосед меняет свою партийность, то он начинает агитировать данного индивида за свою «новую» партию. Такие процессы создают динамику, т.е. протяженное во времени изменение партийности индивидов. Продолжительность противоборства является экзогенно заданной, последний момент может быть условно ассоциирован с днем выборов. Изложенная модель численно реализована на безмасштабной сети. Проведены численные эксперименты для различных значений плотности сети. Ввиду наличия стохастических элементов в модели, для каждого значения плотности проведено 200 прогонов, для каждого из которых определена конечная численность сторонников каждой изпа ртий. Получено, что при увеличении плотности увеличиваются шансы того, что победившая точка зрения охватит практически все население. И наоборот, низкая плотность сети способствует шансам меньшинства сохранить значимую численность.

  6. Шиняева Т.С.
    Динамика активности в виртуальных сетях: сравнение модели распространения эпидемии и модели возбудимой среды
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1485-1499

    Модели распространения эпидемий широко применяются для моделирования социальной активности, например распространения слухов или паники. С другой стороны, для моделирования распространения активности традиционно используются модели возбудимых сред. Проведено моделирование распространения активности в виртуальном сообществе в рамках двух моделей: модели распространения эпидемий SIRS и модели возбудимой среды Винера – Розенблюта. Использованы сетевые версии этих моделей. Сеть предполагалась неоднородной: каждый элемент сети обладает индивидуальным набором характеристик, что соответствует различным психологическим типам членов сообщества. Структура виртуальной сети полагается соответствующей безмасштабной сети. Моделирование проводилось на безмасштабных сетях с различными значениями средней степени вершин. Дополнительно рассмотрен частный случай — полный граф, соответствующий узкой профессиональной группе, когда каждый член группы взаимодействует с каждым. Участники виртуального сообщества могут находиться в одном из трех состояний: 1) потенциальная готовность к восприятию определенной информации; 2) активный интерес к этой информации; 3) полное безразличие к этой информации. Эти состояния вполне соответствуют состояниям, которые обычно используют в моделях распространения эпидемий: 1) восприимчивый к ин- фекции субъект, 2) больной, 3) переболевший и более невосприимчивый к инфекции в силу приобретенного иммунитета или смерти от болезни. Сопоставление двух моделей показало их близость как на уровне формулировки основных положений, так и на уровне возможных режимов. Распространение активности по сети аналогично распространению инфекционных заболеваний. Показано, что активность в виртуальной сети может испытывать колебания или затухать.

  7. Евин И.А., Хабибуллин Т.Ф.
    Социальные сети
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 423-430

    В статье дан обзор основных результатов изучения как реальных социальных сетей (сетей сотрудничества ученых и актеров, сетей цитирования научных публикаций, сетей друзей и знакомых и т. д.), так и современных онлайновых социальных сетей (Twitter, Facebook и т. д.) с точки зрения теории сложных сетей. На основе собственных исследований авторами выявлены особенности восприятия некоторых сложных сетей.

    Просмотров за год: 6. Цитирований: 6 (РИНЦ).

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.