Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Облачная интерпретация энтропийной модели расчета матрицы корреспонденций
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 89-103С ростом населения городов сильнее ощущается необходимость планирования развития транспортной инфраструктуры. Для этой цели создаются пакеты транспортного моделирования, которые обычно содержат набор задач выпуклой оптимизации, итеративное решение которых приводит к искомому равновесному распределению потоков по путям. Одно из направлений развития транспортного моделирования — это построение более точных обобщенных моделей, которые учитывают различные типы пассажиров, их цели поездок, а также специфику личных и общественных средств передвижения, которыми могут воспользоваться агенты. Другим не менее важным направлением является улучшение эффективности производимых вычислений, так как в связи с большой размерностью современных транспортных сетей поиск численного решения задачи равновесного распределения потоков по путям является довольно затратным. Итеративность всего процесса решения лишь усугубляет это. Одним из подходов, ведущим к уменьшению числа производимых вычислений, и является построение согласованных моделей, которые позволяют объединить блоки 4-стадийной модели в единую задачу оптимизации. Это позволяет исключить итеративную прогонку блоков, перейдя от решения отдельной задачи оптимизации на каждом этапе к некоторой общей задаче. В ранних работах было доказано, что такие подходы дают эквивалентные решения. Тем не менее стоит рассмотреть обоснованность и интерпретируемость этих методов. Целью данной статьи является обоснование единой задачи, объединяющей в себе как расчет матрицы корреспонденций, так и модальный выбор, для обобщенного случая, когда в транспортной сети присутствуют различные слои спроса, типы агентов и классы транспортных средств. В статье приводятся возможные интерпретации для калибровочных параметров, применяемых в задаче, а также для двойственных множителей, ассоциированных с балансовыми ограничениями. Авторы статьи также показывают возможность объединения рассматриваемой задачи с блоком определения загрузки сети в единую задачу оптимизации.
Ключевые слова: мультиномиальный логит, модель дискретного выбора, модальный выбор, энтропийная модель. -
Моделирование процессов миграции населения: методы и инструменты (обзор)
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1205-1232Миграция оказывает существенное влияние на формирование демографической структуры населения территорий, состояние региональных и локальных рынков труда. Быстрое изменение численности трудоспособного населения той или иной территории из-за миграционных процессов приводит к дисбалансу спроса и предложения на рынках труда, изменению демографической структуры населения. Миграция во многом является отражением социально-экономических процессов, происходящих в обществе. Поэтому становятся актуальными вопросы, связанные с изучением факторов миграции, направления, интенсивности и структуры миграционных потоков, прогнозированием их величины.
Для анализа, прогнозирования миграционных процессов и оценки их последствий часто используется математический инструментарий, позволяющий с нужной точностью моделировать миграционные процессы для различных территорий на основе имеющихся статистических данных. В последние годы как в России, так и в зарубежных странах появилось много научных работ, посвященных моделированию внутренних и внешних миграционных потоков с использованием математических методов. Следовательно, для формирования целостной картины основных тенденций и направлений исследований в этой области возникла необходимость в систематизации наиболее часто используемых методов и инструментов моделирования.
В представленном обзоре на основе анализа современных отечественных и зарубежных публикаций представлены основные подходы к моделированию миграции, основные составляющие методологии моделирования миграционных процессов — этапы, методы, модели и классификация моделей. Обзор содержит два раздела: методы моделирования миграционных процессов и модели миграции. В первом разделе приведено описание основных методов, используемых в процессе разработки моделей — эконометрических, клеточных автоматов, системно-динамических, вероятностных, балансовых, оптимизации и кластерного анализа. Во втором — выделены и описаны наиболее часто встречающиеся классы моделей — регрессионные, агент-ориентированные, имитационные, оптимизационные, веро- ятностные, балансовые, динамические и комбинированные. Рассмотрены особенности, преимущества и недостатки различных типов моделей миграционных процессов, проведен их сравнительный анализ и разработаны общие рекомендации по выбору математического инструментария для моделирования.
-
Прогнозирование динамики трудовых ресурсов на многоотраслевом рынке труда
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 235-250Рассмотрена задача прогнозирования количества занятых и безработных многоотраслевого рынка труда на основе балансовой математической модели межотраслевых перемещений трудовых ресурсов.
Балансовая математическая модель позволяет вычислять значения показателей межотраслевых перемещений с помощью только статистических данных по отраслевой занятости и безработице, предоставляемых Федеральной службой государственной статистики. Вычисленные за несколько лет подряд показатели межотраслевых перемещений трудовых ресурсов используются для построения трендов каждого из этих показателей. С помощью найденных трендов осуществляется прогнозирование показателей межотраслевых перемещений трудовых ресурсов, на основе результатов которого проводится прогнозирование отраслевой занятости и безработицы исследуемого многоотраслевого рынка труда.
Предложенный подход применен для прогнозирования занятых специалистов в отраслях народного хозяйства Российской Федерации в 2011–2016 гг. Для описания тенденций показателей, определяющих межотраслевые перемещения трудовых ресурсов, использовались следующие виды трендов: линейный, нелинейный, константный. Порядок выбора трендов наглядно продемонстрирован на примере показателей, определяющих перемещения трудовых ресурсов из отрасли «Транспорт и связь» в отрасль «Здравоохранение и предоставление социальных услуг», а также из отрасли «Государственное управление и обеспечение военной безопасности, социальное обеспечение» в отрасль «Образование».
Произведено сравнение нескольких подходов к прогнозированию: наивный прогноз, в рамках которого прогнозирование показателей рынка труда осуществлялось только на основе константного тренда; прогнозирование на основе балансовой модели с использованием только константного тренда для всех показателей, определяющих межотраслевые перемещения трудовых ресурсов; прогноз непосредственно по количеству занятых в отраслях экономики с помощью рассматриваемых в работе видов трендов; прогнозирование на основе балансовой модели с выбором тренда для каждого показателя, определяющего межотраслевые перемещения трудовых ресурсов. Показано, что использование балансовой модели обеспечивает лучшее качество прогноза по сравнению с прогнозированиемне посредственно по количеству занятых. Учет трендов показателей межотраслевых перемещений улучшает качество прогноза.
Также в статье приведены примеры анализа состояния многоотраслевого рынка труда Российской Федерации. С помощью балансовой модели были получены такие сведения, как распределение исходящих из конкретных отраслей потоков трудовых ресурсов по отраслямэк ономики, отраслевая структура входящих в конкретные отрасли потоков трудовых ресурсов. Эти сведения не содержаться непосредственно в данных, предоставляемых Федеральной службой государственной статистики.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"