Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Задачи численного моделирования динамики системы «почва–растение»
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 445-465Рассмотрены современные математические модели динамики системы «почва–растение», составляющими которых выступают: растение сельскохозяйственного назначения, микроорганизмы ризосферы (прикорневой зоны растений), элементы минерального питания растений их подвижной и неподвижной форм. На основании анализа принятых положений разработана модель, в которой учитываются взаимосвязи и определенный согласованный характер совместных изменений ее составляющих. В частности, динамика содержащихся в растениях элементов их минерального питания и динамика биомассы растений определяются текущим содержанием в ризосфере внесенных сюда удобрений и отмершими продуктами жизнедеятельности ризосферных элементов (отмершие корни растений, опавшие листья (опад) и т. д.). Полагаются пространственная неподвижность растений и пространственная подвижность микро- организмов, механизм которой определяется здесь диффузией. Предлагаются формальные соотношения влияния суммарного воздействия на динамику растений сорняков (они характеризуют отдельный вид растений) и вредителей (они характеризуют отдельный вид микроорганизмов), где учитываются взаимные переходы элементов минерального питания из подвижной их формы в неподвижную. Для системы, где каждая из составляющих представлена только одним видом (удобрение, ассоциация микроорганизмов и растения представлены только одним видом), выполнено аналитическое исследование. Для однолетних культур сельскохозяйственного назначения разработана адаптация модели распространения волны в системе «ресурс–потребитель» (волны Колмогорова–Петровского–Пискунова). Реализация модели выполнена на примере динамики роста яровой пшеницы Красноуфимская-100 на торфяной низинной почве, куда предварительно были внесены фосфорные и калийные удобрения. Цифровой материал представлен массивом экспериментальных распределений биомассы растений и элементов минерального питания. Специфика экспериментального материала обусловила переход к модели, которая является редукцией сформулированной общей модели. Ее составляющими выступают распределение биомассы растений и содержание в них элементов минерального питания. Оценка адекватности модельных и экспериментальных распределений показала хорошую степень их соответствия.
-
Стоимостная оценка машин при случайном процессе их деградации и досрочной продажи
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 797-815Исследуется модель процесса использования машин, учитывающая вероятностный характер процесса их эксплуатации и продажи. В ней учитываются возможность случайных скрытых отказов, после которых состояние машин ухудшается скачком, а также случайно возникающая необходимость досрочной (до окончания срока службы) продажи машины, требующей, вообще говоря, случайного времени. Модель ориентирована на оценку рыночной стоимости и сроков службы машин в соответствии с международными стандартами оценки. Строго говоря, рыночная стоимость подержанной машины зависит от ее технического состояния, однако на практике стоимость машины устанавливают с учетом только ее возраста, поскольку общепринятых измерителей технического состояния машин пока еще не предложено. Тем самым стоимость подержанной машины принимается на уровне средней стоимости аналогичных машин соответствующего возраста. В этих целях оценщики используют зависимости стоимости машин от возраста, не всегда обоснованные и не учитывающие ни деградации машин, ни вероятностного характера процесса их использования. Предлагаемая модель основана на принципе ожидания выгод. В ней состояние машины характеризуется интенсивностью приносимых ею выгод. Машина подвергается сложному пуассоновскому потоку отказов, после каждого из которых состояние машины скачком ухудшается и может даже оказаться предельным. Возникают также ситуации, исключающие дальнейшее использование машины ее владельцем. В таких ситуациях владелец выставляет машину на продажу до окончания срока ее службы (досрочно), причем продажа требует случайного времени. Модель позволяет учесть влияние таких ситуаций и построить аналитическую зависимость, связывающую рыночную стоимость машины с ее состоянием, и рассчитать средние коэффициенты изменения рыночной стоимости машин с возрастом. При этом удается также учесть влияние инфляции и утилизационной стоимости машин. Мы установили, что опасность досрочных продаж существенно влияет на сроки службы и стоимость новых и подержанных машин. В то же время зависимости стоимости машин от возраста в значительной степени определяются коэффициентом вариации срока службы машин. Полученные результаты позволяют получать более обоснованные оценки рыночной стоимости машин, в том числе для целей системы национальных счетов.
-
Модели борьбы с силовыми актами в морском пространстве
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 907-920Моделирование борьбы с террористическими, пиратскими и разбойными актами на море является актуальной научной задачей в силу распространенности силовых актов и недостаточного количества работ по данной проблематике. Действия пиратов и террористов разнообразны. С использованием судна-базы они могут нападать на суда на удалении до 450–500 миль от побережья. Выбрав цель, они ее преследуют и с применением оружия идут на абордаж. Действия по освобождению судна, захваченного пиратами или террористами, включают: блокирование судна, прогноз мест возможного нахождения пи- ратов на судне, проникновение (с борта на борт, по воздуху или из-под воды) и зачистка помещений судна. Анализ специальной литературы по действиям пиратов и террористов показал, что силовой акт (и действия по его нейтрализации) состоит из двух этапов: во-первых, это блокирование судна, заключающееся в принуждении к его остановке, и, во-вторых, нейтрализация команды (группы террористов, пиратов), включая проникновение на судно (корабль) и его зачистку. Этапам цикла поставлены в соответствие показатели — вероятность блокирования и вероятность нейтрализации. Переменными модели силового акта являются количество судов (кораблей, катеров) у нападающих и обороняющихся, а также численность группы захвата нападающих и экипажа судна — жертвы атаки. Параметры модели (показатели корабельного и боевого превосходства) оценены методом максимального правдоподобия с использованием международной базы по инцидентам на море. Значения названных параметров равны 7.6–8.5. Столь высокие значения параметров превосходства отражают возможности сторон по действиям в силовых актах. Предложен и статистически обоснован аналитический метод расчета параметров превосходства. В модели учитываются следующие показатели: возможности сторон по обнаружению противника, скоростные и маневренные характеристики судов, высота судна и характеристики средств абордажа, характеристики оружия и средств защиты и др. С использованием модели Г. Беккера и теории дискретного выбора оценена вероятность отказа от силового акта. Значимость полученных моделей для борьбы с силовыми актами в морском пространстве заключается в возможности количественного обоснования мер по защите судна от пиратских и террористических атак и мер сдерживания, направленных на предотвращение атак (наличие на борту судна вооруженной охраны, помощь военных кораблей и вертолетов).
Ключевые слова: математическая модель, пираты, морские террористы, силовой акт, блокирование, нейтрализация, вероятностная модель, оценка параметров. -
Нечеткое моделирование восприимчивости человека к паническим ситуациям
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 203-218Изучение механизма развития массовой паники ввиду ее чрезвычайной значимости и социальной опасности представляет собой важную научную задачу. Имеющаяся информация о механизме ее разви- тия основана в основном на работах специалистов-психологов и относится к разряду неточной. Поэтому в качестве инструмента для разработки математической модели восприимчивости человека к паническим ситуациям выбрана теория нечетких множеств.
В результате проведенного исследования разработана нечеткая модель, состоящая из следующих блоков: «Фаззификация», где происходит вычисление степени принадлежности значений входных пара- метров к нечетким множествам; «Вывод», где на основе степени принадлежности входных параметров вычисляется результирующая функция принадлежности выходного значения нечеткой модели; «Дефаззификация», где с помощью метода центра тяжести определяется единственное количественное значение выходной переменной, характеризующей восприимчивость человека к паническим ситуациям.
Так как реальные количественные значения для лингвистических переменных психических свойств человека неизвестны, то оценить качество разработанной модели, создавая настоящую ситуацию страха и паники, не подвергая людей опасности, не представляется возможным. Поэтому качество результатов нечеткого моделирования оценивалось по расчетному значению коэффициента детерминации, показавшего, что разработанная нечеткая модель относится к разряду моделей хорошего качества $(R^2 = 0.93)$, что подтверждает правомерность принятых допущений при ее разработке.
Согласно результатам моделирования восприимчивость человека к паническим ситуациям для сангвинического и холерического видов темперамента в соответствии с принятой классификацией можно отнести к повышенной (0.88), а для флегматического и меланхолического — к умеренной (0.38). Это означает, что холерики и сангвиники могут стать эпицентрами распространения паники и инициаторами возникновения давки, а флегматики и меланхолики — препятствиями на путях эвакуации, что необходимо учитывать при разработке эффективных эвакуационных мероприятий, главной задачей которых является быстрая и безопасная эвакуация людей из неблагоприятных условий.
В утвержденных методиках расчет нормативных значений параметров безопасности основан на упрощенных аналитических моделях движения людского потока, потому что приходится учитывать большое число факторов, часть которых являются количественно неопределенными. Полученный результат в виде количественных оценок восприимчивости человека к паническим ситуациям позволит повысить точность расчетов.
-
Расчет скорости поперечной волны при ударе по предварительно нагруженным нитям
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 887-897В работе рассматривается задача о поперечном ударе по тонкой предварительно нагруженной нити. Общепринятая теория о поперечному даре по тонкой нити отталкивается от классических публикаций Рахматулина и Смита. На основании теории Рахматулина – Смита получены соотношения, широко используемые в инженерной практике. Однако существуют многочисленные данные о том, что экспериментальные результаты могут существенно отличаться от оценок, сделанных на базе этих соотношений. Краткий обзор факторов, которые вызывают отличия, приведен в тексте статьи.
Основное внимание в данной статье уделяется скорости поперечной волны, формирующейся при ударе, так как только ее можно непосредственно наблюдать и измерять с помощью высокоскоростной съемки или иных методов. Рассматривается влияние предварительного натяжения нити на скорость волны. Данный фактор важен, так как он неизбежно возникает в результатах натурных испытаний в силу того, что надежное закрепление и точное позиционирование нити на экспериментальной установке требует некоторого ее натяжения. В данной работе показано, что предварительная деформация нити существенно влияет на скорость поперечной волны, возникающей в ходе ударного взаимодействия.
Выполнены расчеты серии постановок для нитей Kevlar 29 и Spectra 1000. Для различных уровней начального натяжения получены скорости поперечных волн. Приведено прямое сравнение численных результатов и аналитических оценок с данными экспериментов. Для рассмотренных постановок скорость поперечной волны в свободной и в нагруженной нити отличалась практически в два раза. Таким образом, показано, что измерения, основанные на высокоскоростной съемке и анализе наблюдаемых поперечных волн, должны учитывать предварительную деформацию нити.
В работе предложена формула для быстрой оценки скорости поперечной волны в натянутых нитях. Данная формула получена из основных соотношений теории Рахматулина – Смита в предположении большой начальной деформации нити. На примере рассмотренных постановок для Kevlar 29 и Spectra 1000 показано, что полученная формула может давать существенно лучшие результаты, чем классическое приближение. Также показано, что прямой численный расчет дает результаты, которые оказываются значительно ближе к экспериментальным данным, чем любая из рассмотренных аналитических оценок.
-
Редуцированная модель фотосистемы II для оценки характеристик фотосинтетического аппарата по данным индукции флуоресценции
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 943-958Просмотров за год: 3. Цитирований: 2 (РИНЦ).Рассматривается подход для анализа некоторых биологических систем большой размерности, для которых справедливы предположения о квазиравновесных стадиях. Подход позволяет редуцировать детальные модели большой размерности и получить упрощенные модели, имеющие аналитическое решение. Это дает возможность достаточно точно воспроизводить экспериментальные кривые. Рассматриваемый подход был применен к детальной модели первичных процессов фотосинтеза в реакционном центре фотосистемы II. Упрощенная модель фотосистемы II хорошо описывает экспериментальных кривые индукции флуоресценции для высших и низших растений, полученные при разных интенсивностях света. Выведенные соотношения между переменными и параметрами детальной и упрощенной моделей, позволили использовать полученные оценки параметров упрощенной модели для описания динамики различных состояний фотосистемы II детальной модели.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"