Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'Большие Данные':
Найдено статей: 175
  1. Минкевич И.Г.
    Стехиометрия метаболических путей в динамике клеточных популяций
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 455-475

    Проанализированы проблемы соответствия кинетических моделей клеточного метаболизма описываемому ими объекту. Изложены основы стехиометрии полного метаболизма и его больших частей. Описана биоэнергетическая форма стехиометрии, основанная на универсальной единице восстановленности химических соединений (редоксон). Выведены уравнения материально-энергетического баланса (биоэнергетической стехиометрии) метаболических потоков, в том числе баланса протонов с высоким электрохимическим потенциалом μH+ и макроэргических соединений. Получены соотношения, выражающие выход биомассы, скорость потребления источника энергии для роста и другие физиологически важные величины через биохимические характеристики клеточной энергетики. Вычислены значения максимального энергетического выхода биомассы при использовании клетками различных источников энергии. Эти значения совпадают с экспериментальными данными.

    Просмотров за год: 5. Цитирований: 1 (РИНЦ).
  2. Якушевич Л.В.
    Электронный аналог однородной ДНК
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 789-798

    Известно, что внутренняя подвижность молекул ДНК играет важную роль в функционировании этих молекул. Этим объясняется большой интерес исследователей к изучению особенностей внутренней динамики ДНК. Сложность, трудоемкость и дороговизна проведения исследований в этой области стимулируют поиск и создание более простых физических аналогов, удобных для имитации различных динамических режимов, возможных в ДНК. Одно из направлений такого поиска связано с использованием механического аналога ДНК — цепочки связанных маятников. В этой модели маятники имитируют азотистые основания, горизонтальная нить, на которой подвешены маятники, имитирует сахаро-фосфатную цепочку, а гравитационное поле имитирует поле, наводимое второй нитью ДНК. Простота и наглядность — основные достоинства механического аналога. Однако модель становится слишком громоздкой в тех случаях, когда необходимо моделировать длинные (более тысячи пар оснований) последовательности ДНК. Другое направление связано с использованием электронного аналога молекулы ДНК, который лишен недостатков механической модели. В данной работе мы исследуем возможность использования в качестве электронного аналога джозефсоновскую линию. Мы рассчитали коэффициенты прямых и непрямых преобразований для простого случая однородной, синтетической ДНК, последовательность которой содержит только аденины. Внутренняя подвижности молекулы ДНК моделировалась уравнением синус-Гордона для угловых колебаний азотистых оснований, принадлежащих одной из двух полинуклеотидных цепей ДНК. При этом вторая полинуклеотидная цепь моделировалась как некоторое усредненное поле, в котором происходят эти колебания. Преобразование, позволяющее перейти от ДНК к электронному аналогу, было получено двумя способами. Первый включает две стадии: (1) переход от ДНК к механическому аналогу (цепочке связанных маятников) и (2) переход от механического аналога к электронному (линии Джозефсона). Второй способ прямой. Он включает только одну стадию — прямой переход от ДНК к электронному аналогу.

    Просмотров за год: 9.
  3. Шлеймович М.П., Дагаева М.В., Катасёв А.С., Ляшева С.А., Медведев М.В.
    Анализ изображений в системах управления беспилотными автомобилями на основе модели энергетических признаков
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 369-376

    В статье показана актуальность научно-исследовательских работ в области создания систем управления беспилотными автомобилями на основе технологий компьютерного зрения. Средства компьютерного зрения используются для решения большого количества различных задач, в том числе для определения местоположения автомобиля, обнаружения препятствий, определения пригодного для парковки места. Данные задачи являются ресурсоемкими и должны выполняться в реальном режиме времени. Поэтому актуальна разработка эффективных моделей, методов и средств, обеспечивающих достижение требуемых показателей времени и точности для применения в системах управления беспилотными автомобилями. При этом важное значение имеет выбор модели представления изображений. В данной работе рассмотрена модель на основе вейвлет-преобразования, позволяющая сформировать признаки, характеризующие оценки энергии точек изображения и отражающие их значимость с точки зрения вклада в общую энергию изображения. Для формирования модели энергетических признаков выполняется процедура, основанная на учете зависимостей между вейвлет-коэффициентами различных уровней и применении эвристических настроечных коэффициентов для усиления или ослабления влияния граничных и внутренних точек. На основе предложенной модели можно построить описания изображений для выделения и анализа их характерных особенностей, в том числе для выделения контуров, регионов и особых точек. Эффективность предлагаемого подхода к анализу изображений обусловлена тем, что рассматриваемые объекты, такие как дорожные знаки, дорожная разметка или номера автомобилей, которые необходимо обнаруживать и идентифицировать, характеризуются соответствующими признаками. Кроме того, использование вейвлет-преобразований позволяет производить одни и те же базовые операции для решения комплекса задач в бортовых системах беспилотных автомобилей, в том числе для задач первичной обработки, сегментации, описания, распознавания и сжатия изображений. Применение такого унифицированного подхода позволит сократить время на выполнение всех процедур и снизить требования к вычислительным ресурсам бортовой системы беспилотного автотранспортного средства.

    Просмотров за год: 31. Цитирований: 1 (РИНЦ).
  4. Суворов Н.В., Шлеймович М.П.
    Математическая модель биометрической системы распознавания по радужной оболочке глаза
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 629-639

    Автоматическое распознавание личности по биометрическому признаку основано на уникальных особенностях или характеристиках людей. Процесс биометрической идентификации представляет собой формирование эталонных шаблонов и сравнение их с новыми входными данными. Алгоритмы распознавания по рисунку радужной оболочки глаза показали на практике высокую точность и малый процент ошибок идентификации. Преимущества радужки над другими биометрическими признаками определяется ее большей степенью свободы (около 249 степеней свободы), избыточной плотностью уникальных признаков и постоянностью во времени. Высокий уровень достоверности распознавания очень важен, потому что позволяет выполнять поиск по большим базам данных и работать в режиме идентификации один-ко-многим, в отличии от режима проверки один-к-одному, который применим дляне большого количества сравнений. Любая биометрическая система идентификации является вероятностной. Для описания качественных характеристик распознавания применяются: точность распознавания, вероятность ложного доступа и вероятность ложного отказа доступа. Эти характеристики позволяют сравнивать методы распознавания личности между собой и оценивать поведение системы в каких-либо условиях. В этой статье объясняется математическая модель биометрической идентификации по радужной оболочке глаза, ее характеристики и анализируются результаты сравнения модели с реальным процессом распознавания. Для решения этой задачи проводится обзор существующих методов идентификации по радужной оболочке глаза, основанных на различных способах формирования вектора уникальных признаков. Описывается разработанный программный комплекс на языке Python, который строит вероятностные распределения и генерирует большие наборы тестовых данных, которые могут быть использованы в том числе для обучения нейронной сети принятия решения об идентификации. В качестве практического применения модели предложен алгоритм синергии нескольких методов идентификации личности по радужной оболочке глаза, позволяющий увеличить качественные характеристики системы, в сравнении с применением каждого метода отдельно.

  5. Аристов В.В., Строганов А.В., Ястребов А.Д.
    Применение модели кинетического типа для изучения пространственного распространения COVID-19
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 611-627

    Предлагается простая модель на основе уравнения кинетического типа для описания распространения вируса в пространстве посредством миграции носителей вируса из выделенного центра. Рассматриваются страны, для которых применима одномерная модель: Россия, Италия, Чили. Одномерный подход возможен из-за географического расположения этих стран и их протяженности в направлениях от центров заражения (Москвы, Ломбардии и Сантьяго соответственно). Определяется изменение плотности зараженных во времени и пространстве. Применяется двухпараметрическая модель. Первый параметр — величина средней скорости распространения, соответствующий переносу инфицированных транспортными средствами. Второй параметр — частота уменьшения количества инфицированных элементов по мере продвижения по территории страны, что связано с прибытием пассажиров в места назначения, а также с карантинными мерами, препятствующими их перемещению по стране. Параметры модели определяются по фактически известным данным. Строится аналитическое решение, для получения серии расчетов применяются также простые численные методы. В модели рассматривается пространственное распространение заболевания, при этом заражения на местах не учитываются. Поэтому вычисленные значения на начальном этапе хорошо соответствуют экспериментальным данным, а затем плотность заболевших начинает быстрее возрастать из-за заражений на местах. Тем не менее модельные расчеты позволяют делать некоторые предсказания. Помимо скорости заражения, возможна аналогичная «скорость выздоровления». По моменту времени достижения охвата большей части населения страны при движении фронта выздоровления делается вывод о начале глобального выздоровления, что соответствует реальным данным.

  6. Переварюха А.Ю.
    Модели популяционного процесса с запаздыванием и сценарий адаптационного противодействия инвазии
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 147-161

    Изменения численности y образующихся популяций могут развиваться по нескольким динамическим сценариям. Для стремительных биологических инвазий оказывается важным фактор времени выработки реакции противодействия со стороны биотического окружения. Известны два классических эксперимента с разным завершением противоборства биологических видов. В опытах Гаузе с инфузориями вселенный хищник после кратких осцилляций полностью уничтожал свой ресурс, так его $r$-параметр для созданных условий стал избыточен. Собственная репродуктивная активность не регулировалась дополнительными факторами и в результате становилась критичной для вселенца. В экспериментах Утиды с жуками и выпущенными паразитическими осами виды сосуществовали. В ситуации, когда популяцию с высоким репродуктивным потенциалом регулируют несколько естественных врагов, могут возникать интересные динамические эффекты, наблюдавшиеся у фитофагов в вечнозеленом лесу Австралии. Паразитические перепончатокрылые, конкурируя между собой, создают для быстро размножающихся вредителей псиллид систему регуляции с запаздыванием, когда допускается быстрое увеличение локальной популяции, но не превышающее порогового значения численности вредителя. В работе предложена модель на основе дифференциального уравнения с запаздыванием, описывающая сценарий адаптационной регуляции для популяции с большим репродуктивным потенциалом при активном, но запаздывающем противодействии с пороговой регуляцией данного вновь возникшего воздействия. За кратким максимумом следует быстрое сокращение численности, но минимизация не становится критической для популяции. Показано, что усложнение функции регуляции биотического противодействия приводит к стабилизации динамики после прохождения минимума численности быстро размножающимся видом. Для гибкой системы переходные режимы «рост/кризис» ведут к поиску нового равновесия в эволюционном противостоянии.

  7. Бетелин В.Б., Галкин В.А.
    Математические и вычислительные проблемы, связанные с образованием структур в сложных системах
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 805-815

    В данной работе рассматривается система уравнений магнитной гидродинамики (МГД). Найденные точные решения описывают течения жидкости в пористой среде и связаны с вопросами разработки кернового симулятора и задачами управления параметрами несжимаемой жидкости и направлены на создание отечественной технологии «цифровое месторождение». Центральной проблемой, связанной с использованием вычислительной техники, являются сеточные аппроксимации большой размерности и суперЭВМ высокой производительности с большим числом параллельно работающих микропроцессоров. В качестве возможной альтернативы сеточным аппроксимациям большой размерности разрабатываются кинетические методы решения дифференциальных уравнений и методы «склейки» точных решений на грубых сетках. Сравнительный анализ эффективности вычислительных систем позволяет сделать вывод о необходимости развития организации вычислений, основанных на целочисленной арифметике в сочетании с универсальными приближенными методами. Предложен класс точных решений системы Навье – Стокса, описывающий трехмерные течения для несжимаемой жидкости, а также точные решения нестационарной трехмерной магнитной гидродинамики. Эти решения важны для практических задач управляемой динамики минерализованных флюидов, а также для создания библиотек тестов для верификации приближенных методов. Выделены ряд явлений, связанных с образованием макроскопических структур за счет высокой интенсивности взаимодействия элементов пространственно однородных систем, а также их возникновение за счет линейного пространственного переноса в пространственно-неоднородных системах. Принципиальным является то, что возникновение структур — это следствие разрывности операторов в нормах законов сохранения. Наиболее разработанной и универсальной является теория вычислительных методов для линейных задач. Поэтому с этой точки зрения важными являются процедуры «погружения» нелинейных задач в общие классы линейных за счет изменения исходной размерности описания и расширения функциональных пространств. Отождествление функциональных решений с функциями позволяет вычислять интегральные средние неизвестной, но в то же время ее нелинейные суперпозиции, вообще говоря, не являются слабыми пределами нелинейных суперпозиций приближений метода, т.е. существуют функциональные решения, которые не являются обобщенными в смысле С. Л. Соболева.

  8. Уифтер Т.Т., Разумный Ю.Н., Орловский А.В., Лобанов В.К.
    Мониторинг распространения борщевика Сосновского с использованием алгоритма машинного обучения «случайный лес» в Google Earth Engine
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1357-1370

    Изучение спектрального отклика растений на основе данных, собранных с помощью дистанционного зондирования, имеет большой потенциал для решения реальных проблем в различных областях исследований. В этом исследовании мы использовали спектральные свойства для идентификации инвазивного растения — борщевика Сосновского — по спутниковым снимкам. Борщевик Сосновского — инвазивное растение, которое наносит много вреда людям, животным и экосистеме в целом. Мы использовали выборочные данные о геолокации мест произрастания борщевика в Московской области, собранные с 2018 по 2020 год, и спутниковые снимки Sentinel-2 для спектрального анализа с целью его обнаружения на снимках. Мы развернули модель машинного обучения Random Forest (RF) на облачной платформе Google Earth Engine (GEE). Алгоритм обучается на наборе данных, состоящем из 12 каналов спутниковых снимков Sentinel-2, цифровой модели рельефа и некоторых спектральных индексов, которые используются в алгоритме в качестве параметров. Используемый подход заключается в выявлении биофизических параметров борщевика Сосновского по его коэффициентам отражения с уточнением радиочастотной модели непосредственно по набору данных. Наши результаты наглядно демонстрируют насколько сочетание методов дистанционного зондирования и машинного обучения может помочь в обнаружении борщевика и контроле его инвазивного распространения. Наш подход обеспечивает высокую точность обнаружения очагов произрастания борщевика Сосновского, составляющую 96,93 %.

  9. Скачков Д.А., Гладышев С.И., Райгородский А.М.
    Экспериментальное сравнение алгоритмов поиска вектора PageRank
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 369-379

    Задача поиска PageRank вектора представляет большой научный и практический интерес ввиду своей применимости к работе современных поисковых систем. Несмотря на то, что данная задача сводится к поиску собственного вектора стохастической матрицы $P$, потребность в новых алгоритмах для ее решения обусловлена большими размерами входных данных. Для достижения не более чем линейного времени работы применяются различные рандомизированные методы, возвращающие ожидаемый ответ лишь с некоторой достаточно близкой к единице вероятностью. Нами рассматриваются два таких способа, сводящие задачу поиска вектора PageRank к задаче поиска равновесия в антагонистической матричной игре, которая затем решается с помощью алгоритма Григориадиса – Хачияна. При этом данная реализация эффективно работает в предположении о разреженности матрицы, подаваемой на вход. Насколько нам известно, до сих пор не было ни одной успешной реализации ни алгоритма Григориадиса – Хачияна, ни его применения к задаче поиска вектора PageRank. Данная статья ставит перед собой задачу восполнить этот пробел. В работе приводится описание двух версий алгоритма с псевдокодом и некоторые детали их реализации. Кроме того, в работе рассматривается другой вероятностный метод поиска вектора PageRank, а именно Markov chain Monte Carlo (MCMC), с целью сравнения результатов работы указанных алгоритмов на матрицах с различными значениями спектральной щели. Последнее представляет особый интерес, поскольку значение спектральной щели сильно влияет на скорость сходимости MCMC, и не оказывает никакого влияния на два других подхода. Сравнение проводилось на сгенерированных графах двух видов: цепочках и $d$-мерных кубах. Проведенные эксперименты, как и предсказывает теория, демонстрируют эффективность алгоритма Григориадиса – Хачияна по сравнению с MCMC для разреженных графов с маленьким значением спектральной щели. Весь код находится в открытом доступе, так чтобы все желающие могли воспроизвести полученные результаты самостоятельно, или же использовать данную реализацию в своих нуждах. Работа имеет чисто практическую направленность, никаких теоретических результатов авторами получено не было.

  10. Недбайло Ю.А., Сурченко А.В., Бычков И.Н.
    Снижение частоты промахов в неинклюзивный кэш с инклюзивным справочником многоядерного процессора
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 639-656

    Хотя эпоха экспоненциального роста производительности компьютерных микросхем закончилась, даже настольные процессоры общего назначения сегодня имеют 16 и больше ядер. Поскольку пропускная способность памяти DRAM растет не с такой скоростью, как вычислительная мощность ядер, разработчики процессоров должны искать пути уменьшения частоты обменов с памятью на одну инструкцию. Непосредственным путем к этому является снижение частоты промахов в кэш последнего уровня. Предполагая уже реализованной схему «неинклюзивный кэш с инклюзивным справочником» (NCID), три способа дальнейшего снижения частоты промахов были исследованы.

    Первый способ — это достижение более равномерного использования банков и наборов кэша применением хэш-функций для интерливинга и индексирования. В экспериментах в тестах SPEC CPU2017 refrate, даже простейшие хэш-функции на основе XOR показали увеличение производительности на 3,2%, 9,1% и 8,2% в конфигурациях процессора с 16, 32 и 64 ядрами и банками общего кэша, сравнимое с результатами для более сложных функций на основе матриц, деления и CRC.

    Вторая оптимизация нацелена на уменьшение дублирования на разных уровнях кэшей путем автоматического переключения на эксклюзивную схему, когда она выглядит оптимальной. Известная схема этого типа, FLEXclusion, была модифицирована для использования в NCID-кэшах и показала улучшение производительности в среднемна 3,8%, 5,4% и 7,9% для 16-, 32- и 64-ядерных конфигураций.

    Третьей оптимизацией является увеличение фактической емкости кэша использованием компрессии. Частота сжатия недорогим и быстрыма лгоритмом B DI*-HL (Base-Delta-Immediate Modified, Half-Line), разработанным для NCID, была измерена, и соответствующее увеличение емкости кэша дало около 1% среднего повышения производительности.

    Все три оптимизации могут сочетаться и продемонстрировали прирост производительности в 7,7%, 16% и 19% для конфигураций с 16, 32 и 64 ядрами и банками соответственно.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.