Все выпуски

Гибридные модели в биомедицинских приложениях

 pdf (9456K)  / Аннотация

Список литературы:

  1. A. S. Ackleh, K. Deng, K. Ito, J. Thibodeaux. A structured erythropoiesis model with nonlinear cell maturation velocity and hormone decay rate // Mathematical biosciences. — 2006. — V. 204, no. 1. — P. 21–48. — DOI: 10.1016/j.mbs.2006.08.004. — MathSciNet: MR2269664.
  2. A. Anderson, M. Chaplain, K. Rejniak. Single-cell-based models in biology and medicine. — Springer Science & Business Media, 2007. — MathSciNet: MR2352216.
  3. A. Anderson, K. Rejniak, P. Gerlee, V. Quaranta. Modelling of cancer growth, evolution and invasion: bridging scales and models // Mathematical Modelling of Natural Phenomena. — 2007. — V. 2, no. 3. — P. 1–29. — DOI: 10.1051/mmnp:2007001. — MathSciNet: MR2455390.
  4. A. R. Anderson. A hybrid multiscale model of solid tumour growth and invasion: evolution and the microenvironment / In Single-cell-based models in biology and medicine. — Springer, 2007. — P. 3–28.
  5. V. Baldazzi, P. Paci, M. Bernaschi, F. Castiglione. Modeling lymphocyte homing and encounters in lymph nodes // BMC bioinformatics. — 2009. — V. 10, no. 1. — P. 387. — DOI: 10.1186/1471-2105-10-387.
  6. A. Bauer, F. Tronche, O. Wessely, C. Kellendonk, H. M. Reichardt, P. Steinlein, G. Sch¨utz, H. Beug. The glucocorticoid receptor is required for stress erythropoiesis // Genes & development. — 1999. — V. 13, no. 22. — P. 2996–3002. — DOI: 10.1101/gad.13.22.2996.
  7. N. Bessonov, E. Babushkina, S. Golovashchenko, A. Tosenberger, F. Ataullakhanov, M. Panteleev, A. Tokarev, V. Volpert. Numerical modelling of cell distribution in blood flow // Mathematical Modelling of Natural Phenomena. — 2014. — V. 9, no. 6. — P. 69–84. — DOI: 10.1051/mmnp/20149606. — MathSciNet: MR3264329.
  8. N. Bessonov, F. Crauste, S. Fischer, P. Kurbatova, V. Volpert. Application of hybrid models to blood cell production in the bone marrow // Mathematical Modelling of Natural Phenomena. — 2011. — V. 6, no. 7. — P. 2–12. — DOI: 10.1051/mmnp/20116701. — MathSciNet: MR2812635.
  9. N. Bessonov, N. Eymard, P. Kurbatova, V. Volpert. Mathematical modeling of erythropoiesis in vivo with multiple erythroblastic islands // Applied Mathematics Letters. — 2012. — V. 25, no. 9. — P. 1217–1221. — DOI: 10.1016/j.aml.2012.02.053. — MathSciNet: MR2930749.
  10. N. Bessonov, P. Kurbatova, V. Volpert. Dynamics of growing cell populations. — Centre de Recerca Matem`atica, 2010. — MathSciNet: MR2682434.
  11. N. Bessonov, P. Kurbatova, V. Volpert. Particle dynamics modelling of cell populations // Mathematical Modelling of Natural Phenomena. — 2010. — V. 5, no. 7. — P. 42–47. — DOI: 10.1051/mmnp/20105707. — MathSciNet: MR2682434.
  12. N. Bessonov, L. Pujo-Menjouet, V. Volpert. Cell modelling of hematopoiesis // Mathematical Modelling of Natural Phenomena. — 2006. — V. 1, no. 2. — P. 81–103. — DOI: 10.1051/mmnp:2008005. — MathSciNet: MR2447113.
  13. N. Bessonov, N. Reinberg, V. Volpert. How morphology of artificial organisms influences their evolution // Ecological complexity. — 2015. — V. 24. — P. 57–68. — DOI: 10.1016/j.ecocom.2015.09.005.
  14. G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, A. Meyerhans. Human immunodeficiency virus infection: from biological observations to mechanistic mathematical modelling // Mathematical Modelling of Natural Phenomena. — 2012. — V. 7, no. 5. — P. 78–104. — DOI: 10.1051/mmnp/20127507. — MathSciNet: MR2989627.
  15. G. Bocharov, R. Z ¨ust, L. Cervantes-Barragan, T. Luzyanina, E. Chiglintsev, V. A. Chereshnev, V. Thiel, B. Ludewig. A systems immunology approach to plasmacytoid dendritic cell function in cytopathic virus infections // PLoS pathogens. — 2010. — V. 6, no. 7. — e1001017. — DOI: 10.1371/journal.ppat.1001017.
  16. A. Bouchnita, F.-E. Belmaati, R. Aboulaich, M. J. Koury, V. Volpert. A hybrid computation model to describe the progression of multiple myeloma and its intra-clonal heterogeneity // Computation. — 2017. — V. 5, no. 1. — P. 16.
  17. A. Bouchnita, G. Bocharov, A. Meyerhans, V. Volpert. Hybrid approach to model the spatial regulation of T cell responses // BMC immunology. — 2017. — V. 18, no. 1. — P. 29.
  18. A. Bouchnita, G. Bocharov, A. Meyerhans, V. Volpert. Towards a multiscale model of acute hiv infection // Computation. — 2017. — V. 5, no. 1. — P. 6.
  19. A. Bouchnita, N. Eymard, T. K. Moyo, M. J. Koury, V. Volpert. Bone marrow infiltration by multiple myeloma causes anemia by reversible disruption of erythropoiesis // American journal of hematology. — 2016. — V. 91, no. 4. — P. 371–378. — DOI: 10.1002/ajh.24291.
  20. A. Brioli, L. Melchor, M. Cavo, G. J. Morgan. The impact of intra-clonal heterogeneity on the treatment of multiple myeloma // British journal of haematology. — 2014. — V. 165, no. 4. — P. 441–454. — DOI: 10.1111/bjh.12805.
  21. F. Broere, S. G. Apasov, M. V. Sitkovsky, W. van Eden. A2 T cell subsets and T cell-mediated immunity / Principles of immunopharmacology. — Springer, 2011. — P. 15–27.
  22. J. Chang, S. Reiner. Asymmetric division and stem cell renewal without a permanent niche: lessons from lymphocytes / Cold Spring Harbor symposia on quantitative biology. — Cold Spring Harbor Laboratory Press, 2008. — V. 73. — P. 73–79. — ads: 2008stt..conf...73E.
  23. J. A. Chasis, N. Mohandas. Erythroblastic islands: niches for erythropoiesis // Blood. — 2008. — V. 112, no. 3. — P. 470–478. — DOI: 10.1182/blood-2008-03-077883.
  24. N. A. Cilfone, D. E. Kirschner, J. J. Linderman. Strategies for efficient numerical implementation of hybrid multi-scale agent-based models to describe biological systems // Cellular and molecular bioengineering. — 2015. — V. 8, no. 1. — P. 119–136. — DOI: 10.1007/s12195-014-0363-6.
  25. F. Crauste, I. Demin, O. Gandrillon, V. Volpert. Mathematical study of feedback control roles and relevance in stress erythropoiesis // Journal of theoretical biology. — 2010. — V. 263, no. 3. — P. 303–316. — DOI: 10.1016/j.jtbi.2009.12.026. — MathSciNet: MR2980383.
  26. F. Crauste, L. Pujo-Menjouet, S. G´enieys, C. Molina, O. Gandrillon. Adding selfrenewal in committed erythroid progenitors improves the biological relevance of a mathematical model of erythropoiesis // Journal of theoretical biology. — 2008. — V. 250, no. 2. — P. 322–338. — DOI: 10.1016/j.jtbi.2007.09.041. — MathSciNet: MR2930225.
  27. V. Cremasco, M. C. Woodruff, L. Onder, J. Cupovic, J. M. Nieves-Bonilla, F. A. Schildberg, J. Chang, F. Cremasco, C. J. Harvey, K. Wucherpfennig, et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells // Nature immunology. — 2014. — V. 15, no. 10. — P. 973. — DOI: 10.1038/ni.2965.
  28. R. De Maria, U. Testa, L. Luchetti, A. Zeuner, G. Stassi, E. Pelosi, R. Riccioni, N. Felli, P. Samoggia, C. Peschle. Apoptotic role of fas/fas ligand system in the regulation of erythropoiesis // Blood. — 1999. — V. 93, no. 3. — P. 796–803.
  29. D. Drasdo. Center-based single-cell models: An approach to multi-cellular organization based on a conceptual analogy to colloidal particles / Single-Cell-Based Models in Biology and Medicine. — Springer, 2007. — P. 171–196.
  30. M. Fallahi-Sichani, M. El-Kebir, S. Marino, D. E. Kirschner, J. J. Linderman. Multiscale computational modeling reveals a critical role for tnf-α receptor 1 dynamics in tuberculosis granuloma formation // The Journal of Immunology. — 2011. — 1003299.
  31. S. Fischer, P. Kurbatova, N. Bessonov, O. Gandrillon, V. Volpert, F. Crauste. Modeling erythroblastic islands: using a hybrid model to assess the function of central macrophage // Journal of theoretical biology. — 2012. — V. 298. — P. 92–106. — DOI: 10.1016/j.jtbi.2012.01.002. — MathSciNet: MR2899037.
  32. R. F ¨orster, A. Braun, T. Worbs. Lymph node homing of T cells and dendritic cells via afferent lymphatics // Trends in immunology. — 2012. — V. 33, no. 6. — P. 271–280. — DOI: 10.1016/j.it.2012.02.007.
  33. O. Gandrillon. The v-erba oncogene / Thyroid Hormone Receptors. — Springer, 2002. — P. 91–107.
  34. O. Gandrillon, U. Schmidt, H. Beug, J. Samarut. TGF-β cooperates with TGF-α to induce the selfrenewal of normal erythrocytic progenitors: evidence for an autocrine mechanism // The EMBO journal. — 1999. — V. 18, no. 10. — P. 2764–2781. — DOI: 10.1093/emboj/18.10.2764.
  35. V. V. Ganusov, R. J. De Boer. Do most lymphocytes in humans really reside in the gut? // Trends in immunology. — 2007. — V. 28, no. 12. — P. 514–518. — DOI: 10.1016/j.it.2007.08.009.
  36. C. Giese, U. Marx. Human immunity in vitro–solving immunogenicity and more // Advanced drug delivery reviews. — 2014. — V. 69. — P. 103–122. — DOI: 10.1016/j.addr.2013.12.011.
  37. J.-P. Girard, C. Moussion, R. F ¨orster. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes // Nature Reviews Immunology. — 2012. — V. 12, no. 11. — P. 762. — DOI: 10.1038/nri3298.
  38. R. Goldsby, J. Kuby, T. Kindt. Immunology. — WH Freeman & Co (Sd), 2000.
  39. C. Gong, J. T. Mattila, M. Miller, J. L. Flynn, J. J. Linderman, D. Kirschner. Predicting lymph node output efficiency using systems biology // Journal of theoretical biology. — 2013. — V. 335. — P. 169–184. — DOI: 10.1016/j.jtbi.2013.06.016.
  40. T. Junt, E. Scandella, B. Ludewig. Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence // Nature Reviews Immunology. — 2008. — V. 8, no. 10. — P. 764. — DOI: 10.1038/nri2414.
  41. M. Karttunen, I. Vattulainen, A. Lukkarinen. Novel methods in soft matter simulations. — Springer Science & Business Media, 2004. — V. 640.
  42. M. Koulnis, Y. Liu, K. Hallstrom, M. Socolovsky. Negative autoregulation by fas stabilizes adult erythropoiesis and accelerates its stress response // PLoS One. — 2011. — V. 6, no. 7. — e21192. — DOI: 10.1371/journal.pone.0021192.
  43. M. J. Koury, M. C. Bondurant. Erythropoietin retards dna breakdown and prevents programmed death in erythroid progenitor cells // Science. — 1990. — V. 248, no. 4953. — P. 378–381. — DOI: 10.1126/science.2326648. — ads: 1990Sci...248..378K.
  44. V. Kumar, E. Scandella, R. Danuser, L. Onder, M. Nitschk´e, Y. Fukui, C. Halin, B. Ludewig, J. V. Stein. Global lymphoid tissue remodeling during a viral infection is orchestrated by a b cell-lymphotoxindependent pathway // Blood. — 2010. — V. 115. — P. 4725–4733. — DOI: 10.1182/blood-2009-10-250118.
  45. P. Kurbatova, S. Bernard, N. Bessonov, F. Crauste, I. Demin, C. Dumontet, S. Fischer, V. Volpert. Hybrid model of erythropoiesis and leukemia treatment with cytosine arabinoside // SIAM Journal on Applied Mathematics. — 2011. — V. 71, no. 6. — P. 2246–2268. — DOI: 10.1137/100815517. — MathSciNet: MR2873267.
  46. D. L. Maderazo, J. A. Flegg, M. R. Neeland, M. J. de Veer, M. B. Flegg. Physiological factors leading to a successful vaccination: A computational approach // Journal of theoretical biology. — 2018. — V. 454. — P. 215–230. — DOI: 10.1016/j.jtbi.2018.06.008.
  47. J. M. Mahaffy, J. B´elair, M. C. Mackey. Hematopoietic model with moving boundary condition and state dependent // J. theor. Biol. — 1998. — V. 190. — P. 135–146. — DOI: 10.1006/jtbi.1997.0537.
  48. S. Marino, D. E. Kirschner. A multi-compartment hybrid computational model predicts key roles for dendritic cells in tuberculosis infection // Computation. — 2016. — V. 4, no. 4. — P. 39. — DOI: 10.3390/computation4040039.
  49. L. Melchor, A. Brioli, C. Wardell, A. Murison, N. Potter, M. Kaiser, R. Fryer, D. Johnson, D. Begum, S. H. Wilson, et al. Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma // Leukemia. — 2014. — V. 28, no. 8. — P. 1705. — DOI: 10.1038/leu.2014.13.
  50. G. J. Morgan, B. A. Walker, F. E. Davies. The genetic architecture of multiple myeloma // Nature Reviews Cancer. — 2012. — V. 12, no. 5. — P. 335. — DOI: 10.1038/nrc3257.
  51. S. N. Mueller, R. N. Germain. Stromal cell contributions to the homeostasis and functionality of the immune system // Nature Reviews Immunology. — 2009. — V. 9, no. 9. — P. 618. — DOI: 10.1038/nri2588.
  52. B. H. Nelson. Il-2, regulatory T cells, and tolerance // The Journal of Immunology. — 2004. — V. 172, no. 7. — P. 3983–3988. — DOI: 10.4049/jimmunol.172.7.3983.
  53. B. Pain, C. Woods, J. Saez, T. Flickinger, M. Raines, S. Peyroll, C. Moscovici, M. Moscovici, H.-J. Kung, P. Jurdic, et al. EGF-r as a hemopoietic growth factor receptor: the c-erbb product is present in chicken erythrocytic progenitors and controls their self-renewal // Cell. — 1991. — V. 65, no. 1. — P. 37–46. — DOI: 10.1016/0092-8674(91)90405-N.
  54. A. Palumbo, K. Anderson. Multiple myeloma // N. Engl. J. Med. — 2011. — V. 364, no. 1. — P. 51–61. — DOI: 10.1056/NEJMcp1000402.
  55. P. Pathmanathan, R. A. Gray. Validation and trustworthiness of multiscale models of cardiac electrophysiology // Frontiers in Physiology. — 2018. — V. 9. — P. 106. — DOI: 10.3389/fphys.2018.00106.
  56. S. A. Prokopiou, L. Barbarroux, S. Bernard, J. Mafille, Y. Leverrier, C. Arpin, J. Marvel, O. Gandrillon, F. Crauste. Multiscale modeling of the early CD8 T-cell immune response in lymph nodes: an integrative study // Computation. — 2014. — V. 2, no. 4. — P. 159–181. — DOI: 10.3390/computation2040159.
  57. C. Rubiolo, D. Piazzolla, K. Meissl, H. Beug, J. C. Huber, A. Kolbus, M. Baccarini. A balance between raf-1 and fas expression sets the pace of erythroid differentiation // Blood. — 2006. — V. 108, no. 1. — P. 152–159. — DOI: 10.1182/blood-2005-09-3866.
  58. S. Sakr, R. Jeanjean, C.-C. Zhang, T. Arcondeguy. Inhibition of cell division suppresses heterocyst development in anabaena sp. strain pcc 7120 // Journal of bacteriology. — 2006. — V. 188, no. 4. — P. 1396–1404. — DOI: 10.1128/JB.188.4.1396-1404.2006.
  59. S. T. Sawyer, S. M. Jacobs-Helber. State-of-the-art review: Unraveling distinct intracellular signals that promote survival and proliferation: Study of erythropoietin, stem cell factor, and constitutive signaling in leukemic cells // Journal of hematotherapy & stem cell research. — 2000. — V. 9, no. 1. — P. 21–29. — DOI: 10.1089/152581600319586.
  60. E. Scandella, B. Bolinger, E. Lattmann, S. Miller, S. Favre, D. R. Littman, D. Finke, S. A. Luther, T. Junt, B. Ludewig. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue–inducer cells with stroma of the t cell zone // Nature immunology. — 2008. — V. 9, no. 6. — P. 667. — DOI: 10.1038/ni.1605.
  61. T. A. Schuetz, A. Mang, S. Becker, A. Toma, T. M. Buzug. Identification of crucial parameters in a mathematical multiscale model of glioblastoma growth / Computational and Mathematical Methods in Medicine. — 2014. — MathSciNet: MR3208587.
  62. J. L. Spivak, T. Pham, M. Isaacs, W. D. Hankins. Erythropoietin is both a mitogen and a survival factor // Blood. — 1991. — V. 77, no. 6. — P. 1228–1233.
  63. A. St´eephanou, V. Volpert. Hybrid modelling in biology: a classification review // Mathematical Modelling of Natural Phenomena. — 2016. — V. 11, no. 1. — P. 37–48. — DOI: 10.1051/mmnp/201611103. — MathSciNet: MR3452634.
  64. A. Tosenberger, F. Ataullakhanov, N. Bessonov, M. Panteleev, A. Tokarev, V. Volpert. Modelling of platelet–fibrin clot formation in flow with a dpd–pde method // Journal of mathematical biology. — 2016. — V. 72, no. 3. — P. 649–681. — DOI: 10.1007/s00285-015-0891-2. — MathSciNet: MR3448935.
  65. A. S. Tsiftsoglou, I. S. Vizirianakis, J. Strouboulis. Erythropoiesis: model systems, molecular regulators, and developmental programs // IUBMB life. — 2009. — V. 61, no. 8. — P. 800–830. — DOI: 10.1002/iub.226.
  66. R. M. Welsh, K. Bahl, H. D. Marshall, S. L. Urban. Type 1 interferons and antiviral CD8 T-cell responses // PLoS pathogens. — 2012. — V. 8, no. 1. — e1002352. — DOI: 10.1371/journal.ppat.1002352.
  67. H. Wichmann, M. Loeffler, K. Pantel, H. Wulff. A mathematical model of erythropoiesis in mice and rats part 2: Stimulated erythropoiesis // Cell Proliferation. — 1989. — V. 22, no. 1. — P. 31–49.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.