Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
Основные направления и обзор современного состояния исследований динамики структурированных и взаимодействующих популяций
Список литературы:
- Моделирование сообществ с учетом неопределенности данных // Сибирский экологический журнал. — 2001. — № 5. — С. 559–563.
- Community modeling with data uncertainty // Sibirskiy ekologicheskiy zhurnal. — 2001. — no. 2. — P. 559–563. — in Russian. .
. - Управление и оптимизация в моделях эксплуатируемых популяций. — Владивосток: Дальнаука, 1993.
- Management and Optimization in Models of Harvested Populations. — Vladivostok: Dal’nauka, 1993. — in Russian. .
. - Эффекты промыслового воздействия на рыбную популяцию // Математическая биология и биоинформатика. — 2016. — Т. 11, № 2. — С. 191–204. — DOI: 10.17537/2016.11.191.
- The harvesting effect on a fish population // Mathematical Biology and Bioinformatics. — 2016. — V. 11, no. 2. — P. 191–204. — in Russian. — DOI: 10.17537/2016.11.191. , .
, . - Сложная динамика планктона в топографическом вихре // Математическая биология и биоинформатика. — 2015. — Т. 10, № 1. — С. 416–426. — DOI: 10/17537/2015.10.416 .
- Complex Plankton Dynamics in a Topographic Eddy // Mathematical Biology and Bioinformatics. — 2015. — V. 10, no. 1. — P. 416–426. — in Russian. — DOI: 10.17537/2015.10.416. , , .
, , . - Игровые задачи сбора урожая в биологическом сообществе // Математическая теория игр и ее приложения. — 2011. — Т. 3, № 2. — С. 3–17.
- Game problems of harvesting in a biological community // Automation and Remote Control. — 2011. — V. 3, no. 2. — P. 3–17. — in Russian. — MathSciNet: MR3519317. , , .
, , . - Пространственная модель сообщества видов // Дальневосточный математический журнал. — 2002. — Т. 3, № 1. — С. 102–107.
- Spatial model of species community // Far Eastern Mathematical Journal. — 2002. — V. 3, no. 1. — P. 102–107. — in Russian. — Math-Net: Mi eng/dvmg121. , .
, . - Иерархия моделей математической биологии и численно-аналитические методы их исследования // Математическая биология и биоинформатика. — 2007. — Т. 2, № 2. — С. 347–360.
- Hierarchy of Models in Mathematical Biology and Numerically-analytical Methods of its Investigation // Math. Biol. Bioinf. — 2007. — V. 2, no. 2. — P. 347–360. — DOI: 10.17537/2007.2.347. — in Russian. — Math-Net: Mi eng/mbb28. , .
, . - Бифуркационные механизмы разрушения противофазной синхронизации хаоса в связанных системах с дискретным временем // Изв. вузов, «ПНД». — 2006. — Т. 14, № 6. — С. 100–111.
- Bifurcational mechanisms of destruction of antiphase chaotic synchronization in coupled discrete-time systems // Izvestiya VUZ. Applied Nonlinear Dynamics. — 2006. — V. 14, no. 6. — P. 100–111. — in Russian. , , .
, , . - Эволюция бассейнов притяжений аттракторов связанных систем с удвоением периода // Изв. вузов, «ПНД». — 1997. — Т. 5, № 2–3. — С. 87–99.
- Evolution of the attraction basins of systems coupled with a period doubling bifurcation // Izvestiya VUZ. Applied Nonlinear Dynamics. — 1997. — V. 5, no. 2–3. — P. 87–99. — in Russian. , , , .
, , , . - Математическая биофизика взаимодействующих популяций. — М: Наука, 1985.
- Mathematical biophysics of interacting populations. — Moscow: Nauka, 1985. — in Russian. — MathSciNet: MR0801544. .
. - Нелинейная динамика взаимодействующих популяций. — М.–Ижевск: Ин-т компьют. исслед, 2003.
- Nonlinear dynamics of interacting populations. — Moscow–Izhevsk: In-t kompyut. issled, 2003. — in Russian. .
. - О диссипативных структурах в экологических системах / Факторы разнообразия в математической экологии и популяционной генетике. — Пущино: ОНТИ НЦБИ ФА СССР, 1980. — С. 135–148.
- On Dissipative Structures in Ecological Systems / Diversity Factors in Mathematical Ecology and Population Genetics. — Pushchino: ONTI NTsBI FA SSSR, 1980. — P. 135–148. — in Russian. , .
, . - Анализ индуцированного шумом разрушения режимов сосуществования в популяционной системе «хищник–жертва» // Компьютерные исследования и моделирование. — 2016. — Т. 8, № 4. — С. 647–660. — DOI: 10.20537/2076-7633-2016-8-4-647-660
- Analysis of noise-induced destruction of coexistence regimes in “prey–predator” population model // Computer Research and Modeling. — 2016. — V. 8, no. 4. — P. 647–660. — in Russian. — DOI: 10.20537/2076-7633-2016-8-4-647-660 , , , .
, , , . - Виды колебаний, мультистабильность и бассейны притяжения аттракторов симметрично связанных систем с удвоением периода // Изв. вузов. «ПНД». — 2002. — Т. 10, № 4. — С. 47–68.
- Types of oscillations, multistability and attraction basins of attractors for symmetrically coupled systems with a period doubling // Izvestiya VUZ. Applied Nonlinear Dynamics. — 2002. — V. 10, no. 4. — P. 47–68. — in Russian. — MathSciNet: MR1935817. , , .
, , . - Математическое моделирование и хаотические временные ряды. — Саратов: ГосУНЦ «Колледж», 2005.
- Mathematical modeling and chaotic time series. — Saratov: GosUNTs “Kolledzh”, 2005. — in Russian. , .
, . - Линейный анализ устойчивости двухуровневых систем с диффузией на экологическом примере // Биофизика. — 1984. — № 1. — С. 130–134.
- Linear analysis of the stability of two-level systems with diffusion on an ecological example // Biophysics. — 1984. — no. 1. — P. 130–134. — in Russian. , .
, . - Экология. Особи, популяции и сообщества. — В 2-х т. — М: Мир, 1989. — Т. 1.
- Ecology. Ecology: individuals, populations and communities. — Oxford: Blackwell Scientific Publications, 1986. , , .
- Ekologiya. Osobi, populyatsii i soobshchestva. — V 2-kh t. — Moscow: Mir, 1989. — V. 1. — in Russian. , , .
, , . - Математическая теория борьбы за существование. — М: Наука, 1976.
- Leçons sur la théorie mathématique de la lutte pour la vie. — Paris: Gauthier-Villars, 1931. — MathSciNet: MR1189803. .
- Matematicheskaya teoriya borby za sushchestvovaniye. — Moscow: Nauka, 1976. — in Russian. .
. - Теория матриц. — М: Наука, 1988.
- Theory of matrices. — Moscow: Nauka, 1988. — in Russian. — MathSciNet: MR0986246. .
. - Исследование над борьбой за существование в смешанных популяциях // Зоол. журн. — 1935. — Т. 14, № 2. — С. 243–270.
- Study of the struggle for existence in mixed populations // Russian Journal of Zoology. — 1935. — V. 14, no. 2. — P. 243–270. — in Russian. .
. - Борьба за существование. — М.–Ижевск: Ин-т компьют. иссл, 2002.
- The struggle for existence. — Moscow–Izhevsk: In-t kompyut. issl, 2002. — in Russian. .
. - Распространение волн в системах «ресурс–потребитель» // ДАН СССР. — 1981. — Т. 258, № 5. — С. 1274–1276.
- Wave propagation in resourceconsumer systems // DAN SSSR. — 1981. — V. 258, no. 5. — P. 1274–1276. — in Russian. , .
, . - Динамические эффекты в системе «хищник–жертва» на примере планктонного сообщества // Информатика и системы управления. — 2014. — № 4. — С. 31–40.
- Dynamic effects in a “predator–prey” model of the plankton community // Information science and control systems. — 2014. — no. 4. — P. 31–40. — in Russian. .
. - Нелокальные уравнения реакции-диффузии с запаздыванием: биологические модели и нелинейная динамика // Современная математика. Фундаментальные направления. — 2003. — Т. 1. — С. 84–120.
- Nonlocality of Reaction-Diffusion Equations Induced by Delay: Biological Modeling and Nonlinear Dynamics // Journal of Mathematical Sciences. — 2004. — V. 124. — P. 5119–5153. — DOI: 10.1023/B:JOTH.0000047249.39572.6d. , , .
- Nelokalnyye uravneniya reaktsii-diffuzii s zapazdyvaniyem: biologicheskiye modeli i nelineynaya dinamika // Sovremennaya matematika. Fundamentalnyye napravleniya. — 2003. — V. 1. — P. 84–120. — in Russian. , , .
, , . - Нелинейная динамика численности популяции: влияние усложнения возрастной структуры на сценарии перехода к хаосу // Журнал общей биологии. — 2011. — Т. 72, № 3. — С. 214–229.
- Nonlinear population dynamics: Complication of the age structure influences transition to chaos scenarios // Biology Bulletin Reviews. — 2011. — V. 1, no. 5. — P. 395–406. — DOI: 10.1134/S2079086411050082. , .
- Nelineynaya dinamika chislennosti populyatsii: vliyaniye uslozhneniya vozrastnoy struktury na stsenarii perekhoda k khaosu // Zhurnal obshchey biologii. — 2011. — V. 72, no. 3. — P. 214–229. — in Russian. , .
, . - Математическое моделирование динамики выживаемости самок северного морского котика Сallorhinus ursinus (Linnaeus, 1758) стада острова Тюлений // Биология моря. — 2017. — Т. 43, № 5. — С. 310–320.
- Mathematical Modeling of the Variation in the Survival of Female Northern Fur Seals, Callorhinus ursinus (Linnaeus, 1758), on Tyuleniy Island // Russian Journal of Marine Biology. — 2017. — V. 43, no. 5. — P. 348–358. — DOI: 10.1134/S1063074017050121. , , .
- Matematicheskoe modelirovanie dinamiki vyizhivaemosti samok severnogo morskogo kotika Sallorhinus ursinus (Linnaeus, 1758) stada ostrova Tyuleniy // Biologiya morya. — 2017. — V. 43, no. 5. — P. 348–358. — in Russian. , , .
, , . - Влияние оптимального промысла на характер динамики численности и генетического состава двухвозрастной популяции // Известия РАН. Сер. биологическая. — 2013. — № 6. — С. 738–749.
- The effect of optimal harvesting on the dynamics of size and genetic composition of a two-age population // Biology Bulletin. — 2014. — V. 41, no. 2. — P. 176–186. — DOI: 10.1134/S1062359013060162. , .
- Vliyanie optimal’nogo promysla na kharacter dinamiki chislennosti i geneticheskogo sostava dvuhvozrastnoj populyacii // Izvestiya RAN. Ser. biologicheskaya. — 2013. — no. 6. — P. 738–749. — in Russian. , .
, . - Модельный анализ последствий оптимального промысла для эволюции двухвозрастной популяции // Информатика и системы управления. — 2014. — № 2. — С. 12–21.
- Model analysis of the optimal harvesting effects on the evolution of a two-aged population // Informatics and Control Systems. — 2014. — no. 2. — P. 12–21. — in Russian. , .
, . - Об оптимальной эксплуатации популяций рыб с возрастной структурой // Сибирский журнал индустриальной математики. — 2007. — Т. 10, № 3. — С. 43–57.
- On optimal exploitation of age structured fish populations // Siberian Journal of Industrial Mathematics. — 2007. — V. 10, no. 3. — P. 43–57. — in Russian. — Math-Net: Mi eng/sjim461. .
. - Общая теория роста человечества: сколько людей жило, живет и будет жить на Земле. — М: Наука, 1999.
- The general theory of the growth of mankind: How many people lived, lives and will live on Earth. — Moscow: Nauka, 1999. — in Russian. .
. - Качественное изучение математических моделей динамики популяций // Проблемы кибернетики. — 1972. — № 5. — С. 100–106.
- Qualitative study of mathematical models of population dynamics // Problems of Cybernetics. — 1972. — no. 5. — P. 100–106. — in Russian. — MathSciNet: MR0299260. .
. - Исследование уравнения диффузии, соединенной с возрастанием количества, и его применение к одной биологической проблеме // Бюл. МГУ, сер. «Математика и механика». — 1937. — Т. 6, № 1. — С. 1–26.
- Investigation of the diffusion equation, coupled with increasing quantity, and its application to a certain biological problem // Bulletin of the Moscow State University, series “Mathematics and Mechanics”. — 1937. — V. 6, no. 1. — P. 1–26. — in Russian. , , .
, , . - Критическая динамика решеток связанных отображений у порога хаоса // Известия высших учебных заведений. Радиофизика. — 1991. — Т. 34, № 10–12. — С. 1079–1115.
- Critical dynamics of coupled-map lattices at onset of chaos (review) // Radiophysics and Quantum Electronics. — 1991. — V. 34, no. 10–12. — P. 845–868. — MathSciNet: MR1232727. , .
- Kriticheskaya dinamika reshyotok svyazannyh otobrazhenij u poroga khaosa // Izvestiya vysshyh uchebnyh zavedenij. Radiofizika. — 1991. — V. 34, no. 10–12. — P. 1079–1115. — in Russian. — MathSciNet: MR1186405. — ads: 1991RaF....34.1079K. , .
, . - Универсальность и подобие связанных систем Фейгенбаума // Известия высших учебных заведений. Радиофизика. — 1985. — Т. 27, № 8. — С. 991–1007.
- Universality and scaling in the behavior of coupled Feigenbaum systems // Radiophysics and Quantum Electronics. — 1985. — V. 28, no. 8. — P. 681–695. — DOI: 10.1007/BF01035195. — MathSciNet: MR0814000. .
- Universal’nost’ i podobie svyazannyh system Feigenbauma // Izvestiya vysshyh uchebnyh zavedenij. Radiofizika. — 1985. — V. 27, no. 8. — P. 991–1007. — in Russian. — ads: 1985RaF....28..991K. .
. - Переход от симметричного к несимметричному режиму хаотической динамики в системе диссипативно связанных рекуррентных отображений // Известия высших учебных заведений. Радиофизика. — 1989. — Т. 32, № 1. — С. 49–54.
- Transition from a symmetric to a nonsymmetric regime under conditions of randomness dynamics in a system of dissipatively coupled recurrence mappings // Radiophysics and Quantum Electronics. — 1989. — V. 32, no. 1. — P. 41–45. — DOI: 10.1007/BF01039046. — MathSciNet: MR0993869. , .
- Perehod ot simmetrichnogo k nesimmetrichnomu rezhimu khaoticheskoj dinamiki v sisteme dissipativno svyazannyh rekkurentnyh otobrazhenij // Izvestiya vysshyh uchebnyh zavedenij. Radiofizika. — 1989. — V. 32, no. 1. — P. 49–54. — in Russian. , .
, . - Об одной модели миграционно связанных популяций с дальнодействующими взаимодействиями // Региональные проблемы. — 2018. — Т. 21, № 2. — С. 52–60.
- On a model of populations coupled by migration with long-range interactions // Regional Problems. — 2018. — V. 21, no. 2. — P. 52–60. — in Russian. — DOI: 10.31433/1605-220X-2018-21-2-52-60. .
. - Мультистабильность в моделях динамики миграционно-связанных популяций с возрастной структурой // Нелинейная динамика. — 2014. — Т. 10, № 4. — С. 407–425.
- Multistability in dynamic models of migration coupled populations with an age structure // Rus. J. Nonlin. Dyn. — 2014. — V. 10, no. 4. — P. 407–425. — in Russian. , , .
, , . - Кластеризация и химеры в модели пространственно-временной динамики популяций с возрастной структурой // Нелинейная динамика. — 2018. — Т. 14, № 1. — С. 13–31.
- Clustering and chimeras in the model of the spatial-temporal dynamics of agestructured populations // Rus. J. Nonlin. Dyn. — 2018. — V. 14, no. 1. — P. 13–31. — in Russian. — MathSciNet: MR3789123. , .
, . - Динамическая неустойчивость в математической модели динамики численности популяций лососевых видов рыб // Дальневосточный математический журнал. — 2001. — Т. 2, № 1. — С. 114–125.
- Dynamic instability in the mathematical model of population dynamics of salmon species // Far Eastern Mathematical Journal. — 2001. — V. 2, no. 1. — P. 114–125. — in Russian. — Math-Net: Mi eng/dvmg96. , , .
, , . - Введение в популяционную генетику. — М: Мир, 1978.
- First course in population genetics. — Pacific Grove, California, USA: Boxwood Press, 1976. — Li C. C., ed.
- Vvedenie v populyacionnuyu genetiku. — Moscow: Mir, 1978. — in Russian. .
. - Способна ли миграция стабилизировать экосистему? (Математический аспект) // Журнал общей биологии. — 1978. — Т. 39. — С. 123–129.
- Is migration able to stabilize the ecosystem? (Mathematical Aspect) // Journal of General Biology. — 1978. — V. 39. — P. 123–129. — in Russian. .
. - Неотрицательные матрицы как инструмент моделирования динамики популяций: классические модели и современные обобщения // Фундам. и прикл. математ. — 2007. — Т. 13, № 4. — С. 145–164.
- Non-negative matrices as a tool for modeling population dynamics: classical models and modern generalizations // Fundamental and applied mathematics. — 2007. — V. 13, no. 4. — P. 145–164. — in Russian. — Math-Net: Mi eng/fpm1068. — MathSciNet: MR2366241. , .
, . - Ценопопуляция незабудочника кавказского (Eritrichium caucasicum) как объект математического моделирования. I. Граф жизненного цикла и неавтономная матричная модель // Журнал общей биологии. — 2017. — Т. 78, № 1. — С. 56–66.
- Local population of Eritrichium caucasicum as an object of mathematical modelling. I. Life cycle graph and a nonautonomous matrix model // Biology Bulletin Reviews. — 2017. — V. 7, no. 5. — P. 415–427. — DOI: 10.1134/S207908641705005X. , , , .
- Cenopopulyaciya nezabudochnika kavkazskogo (Eritrichium caucasicum) kak ob'ekt matematicheskogo modelirovaniya. I. Graf zhiznennogo cikla i neavtonomnaya matrichnaya model' // Zhurnal obshchei biologii. — 2017. — V. 78, no. 1. — P. 56–66. — in Russian. , , , .
, , , . - Математика модели Лефковича: репродуктивный потенциал и асимптотические циклы // Мат. моделирование. — 2002. — Т. 14, № 10. — С. 116–126.
- The mathematics of the Lefkovich model: the reproductive potential and asymptotic cycles // Mathematical modeling. — 2002. — V. 14, no. 10. — P. 116–126. — in Russian. — Math-Net: Mi eng/mm545. — MathSciNet: MR1989787. , .
, . - Поливариантный онтогенез у вейников: новые модели и новые открытия // Журнал общей биологии. — 2015. — Т. 76, № 6. — С. 438–460.
- Polyvariant ontogeny in woodreeds: novel models and new discoveries // Biology Bulletin Reviews. — 2016. — V. 6, no. 5. — P. 365–385. — DOI: 10.1134/S2079086416050042. , , .
- Polivariantnyj ontogenez u vejnikov: novye modeli i novye otkrytiya // Zhurnal obshchei biologii. — 2015. — V. 76, no. 6. — P. 438–460. — in Russian. , , .
, , . - Опыт о законе народонаселения. — М: Директмедиа Паблишинг, 2008.
- An Essay on the Principle of Population. — London: J. Johnson, St. Paul’s Church-Yard, 1798. — Malthus T., ed.
- Opyt o zakone narodonaseleniya. — Moscow: Directmedia Publishing, 2008. — in Russian. .
. - Формирование пространственно-временных структур, фракталы и хаос в концептуальных экологических моделях на примере динамики взаимодействующих популяций планктона и рыбы // Успехи физических наук. — 2002. — Т. 172, № 1. — С. 31–66. — DOI: 10.1070/PU2002v045n01ABEH000980 .
- Spatio-temporal pattern formation, fractals, and chaos in conceptual ecological models as applied to coupled plankton-fish dynamics // Phys. Usp. — 2002. — V. 172, no. 1. — P. 27–57. — in Russian. — DOI: 10.1070/PU2002v045n01ABEH000980. — ads: 2002PhyU...45...27M. , , , , , , , .
, , , , , , , . - Влияние промыслового изъятия на режимы динамики лимитированной популяции: результаты моделирования и численного исследования // Математическая биология и биоинформатика. — 2016. — Т. 11, № 1. — С. 1–13. — DOI: 10.17537/2016.11.1 .
- Dynamic modes of exploited limited population: results of modeling and numerical study // Mathematical Biology and Bioinformatics. — 2016. — V. 11, no. 1. — P. 1–13. — in Russian. — DOI: 10.17537/2016.11.1. , , .
, , . - Режимы динамики лимитированной структурированной популяции при избирательном промысле // Математическая биология и биоинформатика. — 2017. — Т. 12. — С. 327–342. — DOI: 10.17537/2017.12.327.
- Dynamic Modes of Limited Structured Population under Age Specific Harvest // Mathematical Biology and Bioinformatics. — 2017. — V. 12, no. 2. — P. 327–342. — in Russian. — DOI: 10.17537/2017.12.327. , , .
, , . - Сравнение пространственновременной динамики промысловых видов животных, обитающих на территориях Среднего Приамурья и Свердловской области // Региональные проблемы. — 2015. — Т. 18, № 1. — С. 26–30.
- Comparison of the spatial-temporal dynamics of commercial species of animals inhabiting the Middle Amur Region and the Sverdlovsk Region // Regional Problems. — 2015. — V. 18, no. 1. — P. 26–30. — in Russian. , , , .
, , , . - Сравнительный анализ влияния различных типов плотностной регуляции на динамику численности структурированных популяций // Информатика и системы управления. — 2015. — Т. 43, № 1. — С. 41–53.
- Comparative analysis of the influence of various types of density regulation on the dynamics of the number of structured populations // Information Science and Control Systems. — 2015. — V. 43, no. 1. — P. 41–53. — in Russian. , .
, . - Непрерывно-дискретные модели динамики численности двух возрастной популяции // Сибирский экологический журнал. — 1999. — Т. 4. — С. 371–375.
- A Continuous-discrete models of time course of the number of a two age population // Sibirskiy ekologicheskiy zhurnal. — 1999. — V. 4. — P. 371–375. — in Russian. , .
, . - Дискретно-непрерывная модель динамики численности двухполой популяции // Сибирский математический журнал. — 1999. — Т. 44, № 3. — С. 650–659.
- Discrete-continuous model of the dynamics of the population of a bisexual population // Siberian Mathematical Journal. — 1999. — V. 44, no. 3. — P. 650–659. — in Russian. — Math-Net: Mi eng/smj1203. — MathSciNet: MR1984709. , .
, . - Лекции по математической экологии. — Новосибирск: Сибирский хронограф, 1997.
- Lectures on mathematical ecology. — Novosibirsk: Sibirskiy khronograf, 1997. — in Russian. .
. - Плотностно-зависимые механизмы регуляции численности красной полевки (Myodes rutilus) в оптимальных и суботимальных местообитаниях юга Западной Сибири // Журн. общей биол. — 2012. — Т. 73, № 1. — С. 49–58.
- Density-dependent regulation in populations of northern red-backed voles (Myodes Rutilus) in optimal and suboptimal habitats of southwest Siberia // Zhurnal Obshchei Biologii. — 2012. — V. 73, no. 1. — P. 49–58. — in Russian. , , .
, , . - Основы сохранения биоразнообразия. — М: Изд-во науч. и учебн.-методич. центра, 2002.
- An Introduction to Conservation Biology. — Moscow: Izd-vo nauch. i uchebn.-metodich. tsentra, 2002. — in Russian. .
. - О возникновении стационарных диссипативных структур в системе типа «хищник–жерва» / Автоволновые процессы в системах с диффузией. — Горький: Горьковский ун-т, 1981. — С. 243–249.
- On the origin of stationary dissipative structures in a “predator–prey” type system / Avtovolnovyye protsessy v sistemakh s diffuziyey. — Gor'’kiy: Gor’kovskiy un-t, 1981. — P. 243–249. — in Russian. .
. - Математическая популяционная генетика. — Новосибирск: Наука. Сиб. отд-ние, 1977.
- Mathematical Population Genetics. — Novosibirsk: Nauka. Sib. otd-niye, 1977. — in Russian. .
. - Модель динамики численности двухвозрастной популяции: устойчивость, мультистабильность и хаос // Нелинейная динамика. — 2016. — Т. 12, № 4. — С. 591–603.
- Model of age-structured population dynamics: stability, multistability, and chaos // Russian Journal of Nonlinear Dynamics. — 2016. — V. 12, no. 4. — P. 591–603. — in Russian. — MathSciNet: MR3622588. , , , .
, , , . - Влияние промыслового изъятия на динамику популяций с возрастной и половой структурой // Математическая биология и биоинформатика. — 2018. — Т. 13, № 1. — С. 270–289.
- Influence of Harvest on the Dynamics of Populations with Age and Sex Structures // Mathematical Biology and Bioinformatics. — 2018. — V. 13, no. 1. — P. 270–289. — in Russian. — DOI: 10.17537/2018.13.270. , , .
, , . - Влияние равновесного промысла на сценарии развития двухвозрастной популяции // Информатика и системы управления. — 2017. — № 3. — С. 36–48.
- Influence of equilibrium fishing on the scenario of development of a two-aged population // Information Science and Control Systems. — 2017. — no. 3. — P. 36–48. — in Russian. , .
, . - Методы оценки и интерпретации биологических показателей популяций рыб. — М: Пищ. пром-ть, 1979.
- Methods for assessing and interpreting the biological parameters of fish populations. — Moscow: Pishch. prom-t’, 1979. — in Russian. .
. - Модели в фитоценологии. — М: Наука, 1984.
- Models in phytocenology. — Moscow: Nauka, 1984. — in Russian. .
. - Устойчивость биологических сообществ. — М: Наука, 1978.
- Stability of biological communities. — Moscow: Nauka, 1978. — in Russian. — MathSciNet: MR0723326. , .
, . - Нелинейные волны, диссипативные структуры и катастрофы в экологии. — М: Наука, 1987.
- Nonlinear waves, dissipative structures and catastrophes in ecology. — Moscow: Nauka, 1987. — in Russian. — MathSciNet: MR1024541. .
. - Волны в экологии / Нелинейные волны с самоорганизацией. — М: Наука, 1983. — С. 32–47.
- Waves in ecology / Nonlinear waves with self-organization. — Moscow: Nauka, 1983. — P. 32–47. — in Russian. .
, , . - Дискретные модели динамики численности и оптимизация промысла. — M: Наука, 1979.
- Discrete models of population dynamics and harvest optimization. — Moscow: Nauka, 1979. — in Russian. , , .
, , . - Дискретные модели популяционной динамики: достоинства, проблемы и обоснование // Компьютерные исследования и моделирование. — 2016. — Т. 8, № 2. — С. 267–284. — DOI: 10.20537/2076-7633-2016-8-2-267-284
- Discrete Models in Population Dynamics: Advantages, Problems, and Justification // Computer Research and Modeling. — 2016. — V. 8, no. 2. — P. 267–284. — in Russian. — DOI: 10.20537/2076-7633-2016-8-2-267-284 , , .
, , . - Интегральные модели пространственно-временной динамики экосистем. — Владивосток: ИАПУ ДВО АН СССР, 1989.
- Integral models of spatiotemporal dynamics of ecosystems. — Vladivostok: IAPU DVO AN SSSR, 1989. — in Russian. — MathSciNet: MR1082386. .
. - Нелинейные связи в популяционной динамике, связанные с возрастной структурой и влиянием промысла // Известия РАН. Серия биологическая. — 2005. — № 5. — С. 517–530.
- Nonlinear effects on population dynamics related to age structure and fishery impact // Biology Bulletin. — 2005. — V. 32, no. 5. — P. 425–437. — DOI: 10.1007/s10525-005-0120-4. , .
- Nelineynyye svyazi v populyatsionnoy dinamike, svyazannyye s vozrastnoy strukturoy i vliyaniyem promysla // Izvestiya RAN. Seriya biologicheskaya. — 2005. — V. 5, no. 5. — P. 517–530. — in Russian. , .
, . - Динамика генов в цепочке генов популяций / Математические модели популяций. — Владивосток: Дальнаука, 1979. — С. 123–131.
- Dynamics of genes in the gene chain / Mathematical models of populations. — Vladivostok: Dal'nauka, 1979. — P. 123–131. — in Russian. — ads: 1979eops.book.....F. .
. - Математические модели динамики численности локальной однородной популяции. — Владивосток: Дальрыбвтуз, 1996. — 59 с.
- Mathematical models of population dynamics of a local homogeneous population. — Vladivostok: Dal'rybvtuz, 1996. — in Russian. .
. - О механизме сохранения неравномерности в пространственном распределении особей / Математическое моделирование в экологии. — М: Наука, 1978. — С. 145–153.
- On the Mechanism of Preservation of Unevenness in the Spatial Distribution of Species / Mathematical Modeling in Ecology. — Moscow: Nauka, 1978. — P. 145–153. — in Russian. .
. - Странные аттракторы в простейших моделях динамики численности популяций с возрастной структурой // Доклады академии наук. — 1994. — Т. 338, № 2. — С. 282–286.
- Strange attractors in the simplest models of population dynamics with age structure // Doklady akademii nauk. — 1994. — V. 338, no. 2. — P. 282–286. — in Russian. .
. - Смена динамических режимов в популяциях видов с коротким жизненным циклом: результаты аналитического и численного исследования // Математическая биология и биоинформатика. — 2014. — Т. 9, № 2. — С. 414–429.
- Changing the dynamic modes in populations with short life cycle: mathematical modeling and simulation // Mathematical Biology and Bioinformatics. — 2014. — V. 9, no. 2. — P. 414–429. — in Russian. — DOI: 10.17537/2014.9.414. , , , .
, , , . - Классификация динамических математических моделей и наблюдаемых в них нелинейных эффектов // Региональные проблемы. — 2017. — Т. 20, № 4. — С. 17–29.
- Classification of dynamic mathematical models and nonlinear effects // Regional problems. — 2017. — V. 20, no. 4. — P. 17–29. — in Russian. , , .
, , . - Механизмы и особенности сезонной и долговременной динамики популяций полевок Clethrionomys rufocanus и Cl. rutilus: количественный анализ и математическое моделирование // Вестн. Сев.-Вост. науч. центра Дальневост. отд. РАН. — 2010. — № 2. — С. 43–47.
- The Mechanisms and Peculiar Characters of Seasonal and Long-Term Dynamics of Voles Clethrionomys rufocanus and Cl. rutilus: a Quantitative Study and Mathematical Modeling // Bulletin of the North-East Scientific Center, Russia Academy of Sciences Far East Branch. — 2010. — no. 2. — P. 43–47. — in Russian. , , .
, , . - «Пятнистость» пространственных структур популяции и происхождение видов как следствие динамической неустойчивости // Вестн. ДВО РАН. — 1996. — № 4. — С. 120–129.
- “Spot” of spatial structures of population and species origin due to dynamic instability // Vestn. DVO RAN. — 1996. — no. 4. — P. 120–129. — in Russian. , , .
, , . - Матричный анализ. — М: Мир, 1989. , .
- К вопросу о циклах в возвратных последовательностях // Управление и информация. — Владивосток: ДВО АН СССР, 1972. — № 3. — С. 96–118.
- On the question of cycles in recurrent sequences // Control and Information. — Vladivostok: DVO AN SSSR, 1972. — no. 3. — P. 96–118. — in Russian. — MathSciNet: MR1082381. .
. - Роль плотностной регуляции в возникновении колебаний численности многовозрастной популяции / Исследования по математической популяционной экологии. — Владивосток: ДВНЦ АН СССР, 1983. — С. 3–17.
- The role of density regulation in the occurrence of fluctuations in the abundance of a multi-aged population / Studies in mathematical population ecology. — Vladivostok: DVNC AN SSSR, 1983. — P. 3–17. — in Russian. .
. - Рекуррентные уравнения в теории популяционной биологии. — М: Наука, 1983.
- Recurrent equations in the theory of population biology. — Moscow: Nauka, 1983. — in Russian. — MathSciNet: MR0719884. , .
, . - Уединенные состояния в 2D-решетке бистабильных элементов при глобальном и близком к глобальному характере взаимодействия // Нелинейная динамика. — 2017. — Т. 13, № 3. — С. 317–329.
- Solitary states in a 2D lattice of bistable elements with global and close to global interaction // Rus. J. Nonlin. Dyn. — 2017. — V. 13, no. 3. — P. 317–329. — in Russian. — MathSciNet: MR3710555. , .
, . - Fluctuations of an introduced population of Svalbard reindeer: the effects of density dependence and climatic variation // Ecography. — 2000. — V. 23. — P. 437–443. — DOI: 10.1111/j.1600-0587.2000.tb00300.x. , , .
- Chimera states for coupled oscillators // Physical review letters. — 2003. — V. 93, no. 17. — P. 1–4. , .
- When does greater mortality increase population size? The long history and diverse mechanisms underlying the hydra effect // Ecology Letters. — 2009. — V. 12, no. 5. — P. 462–474. — DOI: 10.1111/j.1461-0248.2009.01282.x. .
- The effect of adaptive change in the prey on the dynamics of an exploited predator population // Can. J. Fish Aquat. Sci. — 2005. — V. 62, no. 8. — P. 758–766. — DOI: 10.1139/f05-051. , .
- The impact of mortality on predator population size and stability in systems with stage-structured prey // Theoretical Population Biology. — 2005. — V. 68, no. 4. — P. 253–266. — DOI: 10.1016/j.tpb.2005.05.004. , .
- Discrete three-stage population model: persistence and global stability results // Journal of biological dynamics. — 2008. — V. 2, no. 4. — P. 415–427. — DOI: 10.1080/17513750802001812. — MathSciNet: MR2467296. , .
- A stage-structured predator-prey model with density-dependent maturation delay // International Journal of Biomathematics. — 2011. — V. 4, no. 3. — P. 289–312. — DOI: 10.1142/S1793524511001271. — MathSciNet: MR2845201. , .
- Persistence in a ratio-dependent predator-prey-resource model with stage structure for prey // International Journal of Biomathematics. — 2010. — V. 3, no. 3. — P. 313–336. — DOI: 10.1142/S179352451000101X. — MathSciNet: MR2733280. , .
- Chaotic dynamics of a discrete preypredator model with Holling type II // Nonlinear Analysis: Real World Applications. — 2009. — V. 10, no. 1. — P. 116–129. — DOI: 10.1016/j.nonrwa.2007.08.029. — MathSciNet: MR2451695. , , , .
- Applied Population Ecology: Principles and Computer Exercises Using RAMAS EcoLab 2.0. — 1999. , , .
- Animal Aggregations: A Study in General Sociology. — Chicago: University of Chicago Press, 1931. .
- Principles of Animal Ecology. — Philadelphia: Saunders, 1949. , , , , .
- Mathematical models of species interactions in time and space // Amer. Natur. — 1975. — V. 109, no. 967. — P. 319–342. — DOI: 10.1086/283000. — ads: 1975wyef.book.....A. .
- The effect of state dependent delay and harvesting on a stage-structured predatorprey model // Applied Mathematics and Computation. — 2015. — V. 271. — P. 142–153. — DOI: 10.1016/j.amc.2015.08.119. — MathSciNet: MR3414793. .
- Bottom-up derivation of discrete-time population models with the Allee effect // Theoretical Population Biology. — 2009. — V. 75. — P. 56–67. — DOI: 10.1016/j.tpb.2008.11.001. .
- Density dependence in mule deer: a review of evidence // Wildlife Biology. — 2015. — V. 21, no. 1. — P. 18–29. — DOI: 10.2981/wlb.00012. , , , .
- On the Dynamics of Exploited Fish Populations. — Caldwell (NJ): Blackburn Press, 2005. , .
- Stage-Structured Cannibalism in a Ratio-Dependent System with Constant Prey Refuge and Harvesting of Matured Predator // Differential Equations and Dynamical Systems. — 2016. — V. 24, no. 3. — P. 345–366. — DOI: 10.1007/s12591-016-0299-5. — MathSciNet: MR3515048. , .
- . The role of space in stage-structured cannibalism with harvesting of an adult predator // Computers & Mathematics with Applications. — 2013. — V. 66, no. 3. — P. 339–355. — DOI: 10.1016/j.camwa.2013.05.011. — MathSciNet: MR3073344. , .
- Changes over time in the spatiotemporal dynamics of cyclic populations of field voles (Microtus agrestis L.) // The American Naturalist. — 2006. — V. 167, no. 4. — P. 583–590. — DOI: 10.1086/501076. , , , , , .
- A delayed prey–predator system with prey subject to the strong Allee effect and disease // Nonlinear Dynamics. — 2016. — V. 3. — P. 1569–1594. — DOI: 10.1007/s11071-015-2589-9. — MathSciNet: MR3486588. , , , , , , .
- Regulation and Stabilization Paradigms in Population Ecology. — Netherlands: Chapman & Hall Ltd, 1996. , .
- The role of competition and clustering in population dynamics // Proc. R. Soc. B. — 2005. — V. 272. — P. 2065–2072. — DOI: 10.1098/rspb.2005.3185. , .
- Stability regions in predator-prey systems with constant-rate prey harvesting // Journal of Mathematical Biology. — 1979. — V. 8, no. 1. — P. 55–71. — DOI: 10.1007/BF00280586 . — MathSciNet: MR0657280. , .
- Variable effort harvesting models in random environments: generalization to densitydependent noise intensities // Mathematical biosciences. — 2002. — V. 177. — P. 229–245. — DOI: 10.1016/S0025-5564(01)00110-9. .
- Stabilizing effects in spatial parasitoid–host and predator–prey models: areview // Theoretical Population Biology. — 2004. — V. 65. — P. 299–315. — DOI: 10.1016/j.tpb.2003.11.001. , .
- Matrix Population Models: construction, analysis, and interpretation. — Massachusetts: Sinauer Associates Ink, 2001. .
- Bifurcation and control of a bioeconomic model of a prey–predator system with a time delay // Nonlinear Analysis: Hybrid Systems. — 2011. — V. 5, no. 4. — P. 613–625. — DOI: 10.1016/j.nahs.2011.05.004. — MathSciNet: MR2831465. , , .
- Optimal control of harvest and bifurcation of a preypredator model with stage structure // Applied Mathematics and Computation. — 2011. — V. 217, no. 21. — P. 8778–8792. — DOI: 10.1016/j.amc.2011.03.139. — MathSciNet: MR2802286. , , .
- Global dynamics and bifurcation in a stage structured preypredator fishery model with harvesting // Applied Mathematics and Computation. — 2012. — V. 218, no. 18. — P. 9271–9290. — DOI: 10.1016/j.amc.2012.03.005. — MathSciNet: MR2923025. , , .
- Optimal foraging theory: The marginal value theorem // Theor. Pop. Biol. — 1976. — V. 9. — P. 129–136. — DOI: 10.1016/0040-5809(76)90040-X. .
- Harvest timing and its population dynamic consequences in a discrete single-species model // Mathematical biosciences. — 2014. — V. 248. — P. 78–87. — DOI: 10.1016/j.mbs.2013.12.003. — MathSciNet: MR3162644. , , .
- The spatial dynamics of host-parasitoid systems // J. Animal Ecology. — 1992. — V. 61. — P. 735–748. — DOI: 10.2307/5627. , , .
- Hydra effects in discrete-time models of stable communities // Journal of theoretical biology. — 2016. — V. 411. — P. 59–67. — DOI: 10.1016/j.jtbi.2016.09.021. .
- Inverse density dependence and the Allee effect // Trends in Ecology & Evolution. — 1999. — V. 14, no. 10. — P. 405–410. — DOI: 10.1016/s0169-5347(99)01683-3. , , .
- Migration Dynamics for the Ideal Free Distribution // The American Naturalist. — 2006. — V. 168, no. 3. — P. 384–987. — DOI: 10.1086/506970. , .
- A study of harvesting in a predator-prey model with disease in both populations // Mathematical Methods in the Applied Sciences. — 2016. — V. 39, no. 11. — P. 2853–2870. — DOI: 10.1002/mma.3735. — MathSciNet: MR3512735. — ads: 2016MMAS...39.2853D. .
- Self-organized patterns of coexistence out of a predator-prey cellular automaton // International Journal of Modern Physics C. — 2006. — V. 17, no. 11. — P. 1647–1662. — DOI: 10.1142/S0129183106010005. — MathSciNet: MR2288659. — ads: 2006IJMPC..17.1647D. , .
- Individual-based models and approaches in ecology: populations, communities and ecosystems. — CRC Press, 2018. — MathSciNet: MR3525082. .
- Density dependence in time series observations of natural-populations-estimation and testing // Ecological Monographs. — 1994. — V. 64, no. 2. — P. 205–224. — DOI: 10.2307/2937041. , .
- Coherence and Conservation // Science. — 2000. — V. 290, no. 5495. — P. 1360–1364. — DOI: 10.1126/science.290.5495.1360. — ads: 2000Sci...290.1360E. , , .
- Changes in Vole and Lemming Fluctuations in Northern Sweden 1960–2008 Revealed by Fox Dynamics // Annales Zoologici Fennici. — 2011. — V. 48, no. 3. — P. 167–179. — DOI: 10.5735/086.048.0305. , , , .
- Cellular automata approaches to biological modeling // Journal of theoretical Biology. — 1993. — V. 160, no. 1. — P. 97–133. — DOI: 10.1006/jtbi.1993.1007. , .
- All the fish in the sea: maximum sustainable yield and the failure of fisheries management. — University of Chicago Press, 2011. .
- The wave of advance of advantageous genes // Ann. Eugenica. — 1937. — V. 7. — P. 355–369. — DOI: 10.1111/j.1469-1809.1937.tb02153.x. .
- Evolutionary Transition to Complex Population Dynamic Patterns in an Age-structured Population / Models of the Ecological Hierarchy: From Molecules to the Ecosphere. — Elsevier B.V, 2012. — P. 91–103. , .
- Change of dynamic regimes in the population of species with short life cycles: Results of an analytical and numerical study // Ecological Complexity. — 2016. — V. 27. — P. 2–11. — DOI: 10.1016/j.ecocom.2016.02.001. , , .
- Differences in densities of individuals in population with uniform range // Ecol. Modelling. — 1980. — no. 8. — P. 345–354. — DOI: 10.1016/0304-3800(80)90046-0. .
- Resource management cycles and the sustainability of harvested wildlife populations // Science. — 2010. — V. 328, no. 5980. — P. 903–906. — DOI: 10.1126/science.1185802. — MathSciNet: MR2662592. — ads: 2010Sci...328..903F. , , , , .
- Corrigendum to: Effectiveness of commercial harvesting in controlling feral-pig populations // Wildlife Research. — 2014. — V. 41, no. 3. — P. 275–275. — DOI: 10.1071/WR13100_CO. , .
- Harvesting and predation of a sex- and age-structured population // Journal of Biological Dynamics. — 2011. — V. 5, no. 6. — P. 600–618. — DOI: 10.1080/17513758.2010.515689. — MathSciNet: MR2864345. , .
- A stage structured predator-prey model and its dependence on maturation delay and death rate // Journal of mathematical Biology. — 2004. — V. 49, no. 2. — P. 188–200. — DOI: 10.1007/s00285-004-0278-2. — MathSciNet: MR2145690. , .
- An individual-based evolving preda-tor-prey ecosystem simulation using a fuzzy cognitive map as the behavior model // Artificial life. — 2009. — V. 15, no. 4. — P. 423–463. — DOI: 10.1162/artl.2009.Gras.012. , , , .
- The effect of harvesting on a predator-prey system with stage structure // Ecological Modelling. — 2005. — V. 187, no. 2–3. — P. 329–340. — DOI: 10.1016/j.ecolmodel.2005.01.052. , .
- Single-species metapopulation dynamics: a structured model // Theoretical Population Biology. — 1992. — V. 42. — P. 35–61. — DOI: 10.1016/0040-5809(92)90004-D. — MathSciNet: MR1181879. , .
- Ecology and evolution of symbiosis in metapopulations // Journal of Biological Dynamics. — 2009. — V. 3, no. 1. — P. 39–57. — DOI: 10.1080/17513750802101935. — MathSciNet: MR2489624. , , .
- Does migration stabilize local population dynamics? Analysis of a discrete matapopulation model // Math. Biosciences. — 1993. — V. 118. — P. 25–49. — DOI: 10.1016/0025-5564(93)90032-6. — MathSciNet: MR1244691. , , .
- A mathematical theory of natural and artificial selection // Mathematical Proceedings of the Cambridge Philosophical Society. — Cambridge University Press, 1930. — V. 26, no. 2. — P. 220 — 230. — DOI: 10.1017/S0305004100015450. .
- Leslie matrix models // Mathematical Population Studies. — 1989. — V. 2, no. 1. — P. 37–67. — DOI: 10.1080/08898488909525291. — MathSciNet: MR1008184. .
- Multiannual Vole Cycles and Population Regulation during Long Winters: An Analysis of Seasonal Density Dependence // The American Naturalist. — 1999. — V. 154. — P. 129–139. — DOI: 10.1086/303229. , , .
- Ecology, Genetics and Evolution of Metapopulations. — London: Academic Press, 2004. — Hanski I., Gaggiotti O., eds.
- Two general metapopulation models and the core-satellite species hypothesis // American Naturalist. — 1993. — V. 142, no. 1. — P. 17–41. — DOI: 10.1086/285527. , .
- Population oscillations of boreal rodents: regulation by mustelid predators leads to chaos // Nature. — 1993. — V. 364. — P. 232–235. — DOI: 10.1038/364232a0. — ads: 1993Natur.364..232H. , , , .
- Host-parasitoid population dynamics // Journal of Animal Ecology. — 2000. — V. 69. — P. 543–566. — DOI: 10.1046/j.1365-2656.2000.00445.x. .
- Density-dependence in single-species populations // J. Anim. Ecol. — 1975. — V. 44. — P. 283–295. — DOI: 10.2307/3863. .
- Stability and complexity in model ecosystems // Nature. — 1991. — V. 353. — P. 255–258. — DOI: 10.1038/353255a0. — ads: 1991Natur.353..255H. , , .
- Age dependent dispersal is not a simple process: Density dependence, stability, and chaos // Theor. Popul. Biol. — 1992. — V. 41, no. 3. — P. 388–400. — DOI: 10.1016/0040-5809(92)90036-S. .
- A biological reference point based on the Leslie matrix // Fish. Bull. — 2000. — V. 98. — P. 75–85. .
- Analysis of a stochastic ratio-dependent one-predator and twomutualistic-preys model with Markovian switching and Holling type III functional response // Advances in Difference Equations. — 2016. — V. 285. — DOI: 10.1186/s13662-016-1011-3. — MathSciNet: MR3568272. , , , .
- Complex dynamic behavior of a discrete-time predator–prey system of Holling-III type // Advances in Difference Equations. — 2014. — V. 180. — MathSciNet: MR3344136. , .
- Wolf and elk predator–prey dynamics in Banff National Park. — USA: University of Montana, Missoula, 2000. — Thesis. .
- Do principles for conservation help managers? // Ecological Applications. — 1996. — V. 6, no. 2. — P. 364–365. — DOI: 10.2307/2269371 . .
- The ecological detective: confronting models with data. — Princeton University Press, 1997. , .
- Oscillations and waves in a virally infected plankton system: Part II: Transition from lysogeny to lysis // Ecological complexity. — 2006. — V. 3, no. 3. — P. 200–208. — DOI: 10.1016/j.ecocom.2006.03.002. , , , .
- Evolutionary games and population dynamics. — Cambridge university press, 1998. — MathSciNet: MR1635735. , .
- Interspecific competition in larvae between entomophagous parasitoids // American Naturalist. — 1984. — V. 124. — P. 552–560. — DOI: 10.1086/284294. , .
- Estimates of maximum annual population growth rates (rm) of mammals and their application in wildlife management // Journal of Applied Ecology. — 2010. — V. 47, no. 3. — P. 507–514. — DOI: 10.1111/j.1365-2664.2010.01812.x. , , .
- Species composition and the amount of zooplankton in relation to the fish stock // Rozpr. CSAV, Ser. mat. nat. sci. — 1962. — V. 72. — P. l–117. .
- Stability and bifurcation analysis of a discrete predator–prey model with nonmonotonic functional response // Nonlinear Analysis: Real World Applications. — 2011. — V. 12, no. 4. — P. 2356–2377. — DOI: 10.1016/j.nonrwa.2011.02.009. — MathSciNet: MR2801025. , , .
- Bifurcation, chaos and pattern formation in a space-and time-discrete predatorprey system // Chaos, Solitons & Fractals. — 2016. — V. 91. — P. 92–107. — DOI: 10.1016/j.chaos.2016.05.009. — MathSciNet: MR3551690. — ads: 2016CSF....91...92H. , .
- Complex patterns in a space-and time-discrete predator-prey model with Beddington-DeAngelis functional response // Communications in Nonlinear Science and Numerical Simulation. — 2017. — V. 43. — P. 182–199. — DOI: 10.1016/j.cnsns.2016.07.004. — MathSciNet: MR3537313. — ads: 2017CNSNS..43..182H. , , , , .
- Harvesting fisheries management strategies with modified effort function // International Journal of Modelling, Identification and Control. — 2008. — V. 3, no. 1. — P. 83–87. — DOI: 10.1504/IJMIC.2008.018188. , .
- Small mammals cycles in northern Europe: patterns and evidence for the maternal effect hypothesis // Journal of Animal Ecology. — 1998. — V. 67. — P. 180–194. — DOI: 10.1046/j.1365-2656.1998.00189.x. , .
- Prey distribution as a factor determining the choice of optimal foraging strategy // The American Naturalist. — 1981. — V. 117, no. 5. — P. 710–723. — DOI: 10.1086/283754. — MathSciNet: MR0642407. , , .
- Solitary states for coupled oscillators with inertia // Chaos. — 2018. — V. 28. — 011103. — DOI: 10.1063/1.5019792. — MathSciNet: MR3747424. — ads: 2018Chaos..28a1103J. , , , , , .
- Niche overlap of parasitoids in host–parasitoid systems: its consequence to single versus multiple introduction controversy in biological control // Journal of Applied Ecology. — 1984. — V. 21. — P. 115–131. — DOI: 10.2307/2403041. , , , .
- Clustering, coding, switching, hierarchical, ordering, and control in network of chaotic elements // Physica D. — 1990. — V. 41. — P. 137–172. — DOI: 10.1016/0167-2789(90)90119-A. — MathSciNet: MR1049123. — ads: 1990PhyD...41..137K. .
- Lyapunov analysis and information flow in coupled map lattices // Phisica D. — 1986. — V. 23. — P. 436–447. — DOI: 10.1016/0167-2789(86)90149-1. — MathSciNet: MR0876920. — ads: 1986PhyD...23..436K. .
- Period-Doubling of Kink-Antikink Patterns, Quasiperiodicity in Antiferro-Like Structures and Spatial Intermittency in Coupled Logistic Lattice Towards a Prelude of a “Field Theory of Chaos” // Progress of Theoretical Physics. — 1984. — V. 72, no. 3. — P. 480–486. — DOI: 10.1143/PTP.72.480. — MathSciNet: MR0769060. — ads: 1984PThPh..72..480K. .
- Noise and seasonal effects on the dynamics of plant-herbivore models with monotonic plant growth functions // International Journal of Biomathematics. — 2011. — V. 4, no. 3. — P. 255–274. — DOI: 10.1142/S1793524511001234. — MathSciNet: MR2845199. , .
- Dynamics of a plant-herbivore model // Journal of Biological Dynamics. — 2008. — V. 2, no. 2. — P. 89–101. — DOI: 10.1080/17513750801956313. — MathSciNet: MR2427520. , , .
- Stability analysis of predator–prey system with migrating prey and disease infection in both species // Applied Mathematical Modelling. — 2017. — V. 42. — P. 509–539. — DOI: 10.1016/j.apm.2016.10.003. — MathSciNet: MR3580631. , .
- Linking climate change to lemming cycles // Nature. — 2008. — V. 456. — P. 93–97. — DOI: 10.1038/nature07442. — ads: 2008Natur.456...93K. , , , , , , , , , , .
- Predators choose prey over prey habitats: evidence from a lynxhare system // Ecological Applications. — 2011. — V. 21, no. 4. — P. 1011–1016. — DOI: 10.1890/10-0949.1. , , .
- Modeling the dynamics of stage-structure predator-prey system with Monod–Haldane type response function // Applied Mathematics and Computation. — 2017. — V. 302. — P. 122–143. — DOI: 10.1016/j.amc.2017.01.019. — MathSciNet: MR3602743. .
- Role of constant prey refuge on stage structure predator–prey model with ratio dependent functional response // Applied Mathematics and Computation. — 2017. — V. 314. — P. 193–198. — DOI: 10.1016/j.amc.2017.07.017. — MathSciNet: MR3683866. , .
- Neimark-Sacker bifurcation of a two-dimensional discrete-time predator-prey model // SpringerPlus. — 2016. — V. 5, no. 126. — DOI: 10.1186/s40064-015-1618-y . .
- Diffusion models in population genetics // Methren Review Series in applied probability. — 1964. — V. 2. — P. 178–232. — MathSciNet: MR0172727. .
- The Stepping Stone Model of Population Structure and the Decrease of Genetic Correlation with Distance // Genetics. — 1964. — V. 49, no. 4. — P. 561–576. , .
- Multiple attractors in host-parasitoid interactions: Coexistence and extinction // Mathematical Biosciences. — 2006. — V. 201. — P. 1–2. — DOI: 10.1016/j.mbs.2005.12.010. — MathSciNet: MR2252086. — ads: 2006LNP...704....1K. .
- Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles // Global Change Biology. — 2013. — V. 19. — P. 697–710. — DOI: 10.1111/gcb.12099. — ads: 2013GCBio..19..697K. , , , , , , , , , .
- Dispersal data and the spread of invading organisms // Ecology. — 1996. — V. 77, no. 7. — P. 2027–2042. — DOI: 10.2307/2265698. , , .
- Population Fluctuations in Rodents. — Chicago: The University of Chicago Press, 2013. .
- Marine metapopulations. — New York: Academic Press, 2006. , .
- The ideal free distribution: A review and synthesis of the gametheoretic perspective // Theoretical Population Biology. — 2008. — V. 73. — P. 403–425. — DOI: 10.1016/j.tpb.2007.12.009. , , .
- Coexistence of coherence and incoherence in nonlocally coupled phase oscillators // Nonlinear Phenomena in Complex Systems. — 2002. — V. 5, no. 4. — P. 380–385. , .
- Optimal harvesting of fluctuating populations with a risk of extinction // The American Naturalist. — 1995. — V. 145, no. 5. — P. 728–745. — DOI: 10.1086/285765. , , .
- An epitaph for the concept of maximum sustained yield // Transactions of the American fisheries society. — 1977. — V. 106, no. 1. — P. 1–11. — DOI: 10.1577/1548-8659(1977)106<1:AEFTCO>2.0.CO;2. .
- The study of population growth in organisms grouped by stages // Biometrics. — 1965. — V. 21. — P. 1–18. — DOI: 10.2307/2528348. .
- Spatial pattern and ecological analysis // Plant Ecology. — 1989. — V. 80, no. 2. — P. 107–138. — DOI: 10.1007/BF00048036. , .
- On the use of matrices in certain population mathematics // Biometrika. — 1945. — V. 33. — P. 183–212. — DOI: 10.1093/biomet/33.3.183. — MathSciNet: MR0015760. .
- Some further notes on the use of matrices in population mathematics // Biometrika. — 1948. — V. 35. — P. 213–245. — DOI: 10.1093/biomet/35.3-4.213. — MathSciNet: MR0027991. .
- Some demographic and genetic consequences of environmental heterogeneity for biological control // Bulletin of the Entomological Society of America. — 1969. — V. 15. — P. 237–240. — DOI: 10.1093/besa/15.3.237. .
- Permanence and stability of equilibrium for a two-prey one-predator discrete model // Applied Mathematics and Computation. — 2007. — V. 186. — P. 93–100. — DOI: 10.1016/j.amc.2006.07.090. — MathSciNet: MR2316495. , , .
- Dynamics of a stochastic one-prey two-predator model with Lévy jumps // Applied Mathematics and Computation. — 2016. — V. 284. — P. 308–321. — DOI: 10.1016/j.amc.2016.02.033. — MathSciNet: MR3486371. , .
- Stability in distribution of a three-species stochastic cascade predator-prey system with time delays // IMA Journal of Applied Mathematics. — 2017. — V. 82, no. 2. — P. 396–423. — MathSciNet: MR3649390. , .
- Dynamics of a stochastic regime-switching predator—prey model with harvesting and distributed delays // Nonlinear Analysis: Hybrid Systems. — 2018. — V. 28. — P. 87–104. — DOI: 10.1016/j.nahs.2017.10.004. — MathSciNet: MR3744970. , , .
- Stability analysis in a delayed prey–predator-resource model with harvest effort and stage structure // Applied Mathematics and Computation. — 2014. — V. 238. — P. 177–192. — DOI: 10.1016/j.amc.2014.04.015. — MathSciNet: MR3209626. , , , .
- How to control chaotic behaviour and population size with proportional feedback // Phys Lett A. — 2010. — V. 374. — P. 725–728. — DOI: 10.1016/j.physleta.2009.11.063. — MathSciNet: MR2575625. — ads: 2010PhLA..374..725L. .
- Harvesting and dynamics in some one-dimensional population models / Theory and Applications of Difference Equations and Discrete Dynamical Systems. — Berlin, Heidelberg: Springer, 2014. — P. 61–73. — MathSciNet: MR3280200. , .
- Global dynamics in a stage-structured discrete-time population model with harvesting // Journal of Theoretical Biology. — 2012. — V. 297. — P. 148–165. — DOI: 10.1016/j.jtbi.2011.12.012. — MathSciNet: MR2899025. , .
- The hydra effect, bubbles, and chaos in a simple discrete population model with constant effort harvesting // Journal of mathematical biology. — 2012. — V. 65, no. 5. — P. 997–1016. — DOI: 10.1007/s00285-011-0489-2. — MathSciNet: MR2984132. , .
- Convexity in projection matrices: projection to a calibration problem // Ecological Modelling. — 2008. — V. 216, no. 2. — P. 217–228. — DOI: 10.1016/j.ecolmodel.2008.03.004. .
- Uncertainty, resource exploitation, and conservation: lessons from history // Ecological Applications. — 1993. — V. 3, no. 4. — P. 547–549. , , .
- Macro-ecological patterns of a prey–predator system: rodents and snakes in West and Central Africa // Tropical zoology. — 2014. — V. 27, no. 1. — P. 1–8. — DOI: 10.1080/03946975.2014.894399. , , , .
- An impulsive two-stage predator—prey model with stage-structure and square root functional responses // Mathematics and Computers in Simulation. — 2016. — V. 119. — P. 91–107. — DOI: 10.1016/j.matcom.2015.08.009. — MathSciNet: MR3412994. , , , , , .
- Population distribution and synchronized dynamics in a metapopulation model in two geographic scales // Mathematical Biosciences. — 2014. — V. 250. — P. 1–9. — DOI: 10.1016/j.mbs.2014.02.002. — MathSciNet: MR3178304. — ads: 2014AIPC.1577....1M. , .
- The Influence of Temporal Migration in the Synchronization of Populations Trends in Applied and Computational Mathematics // Tend. Mat. Apl. Comput. — 2015. — V. 16, no. 1. — P. 31–40. — MathSciNet: MR3361847. , .
- Effective number of alleles in subdivided population // Theor. Pop. Biol. — 1970. — V. 1, no. 1. — P. 273–306. — DOI: 10.1016/0040-5809(70)90047-X. — MathSciNet: MR0363532. .
- Biological population obeying difference equations: stable points, stable cycles and chaos // J. Theor. Biol. — 1975. — V. 51, no. 2. — P. 511–524. — DOI: 10.1016/0022-5193(75)90078-8. .
- Simple mathematical models with very complicated dynamics // Nature. — 1976. — V. 261. — P. 459–467. — DOI: 10.1038/261459a0. — ads: 1976Natur.261..459M. .
- Stability and Complexity in Model Ecosystems. — Princeton (NJ): PrinP. Univ. Press, 1973. .
- Synchronicity, chaos and population cycles: spatial coherence in an uncertain world // Trends Ecol. Evol. — 1999. — V. 14, no. 11. — P. 417–418. — DOI: 10.1016/S0169-5347(99)01717-6. , .
- Biological populations with non-overlapping generations: stable points, stable cycles and chaos // Science. — 1974. — V. 186. — P. 645–647. — DOI: 10.1126/science.186.4164.645. — ads: 1974Sci...186..645M. .
- Models in ecology. — Cambridge: Cambridge University Press, 1974. .
- The stability of predator–prey systems // Ecology. — 1973. — V. 54. — P. 384–391. — DOI: 10.2307/1934346. , .
- Prey, predator and super-predator model with disease in the super-predator // Applied Mathematics and Computation. — 2017. — V. 297. — P. 92–114. — DOI: 10.1016/j.amc.2016.10.034. — MathSciNet: MR3577996. , , .
- Dynamics of age-structured and spatially structured predator-prey interactions: individual-based models and population-level formulations // The American Naturalist. — 1993. — V. 142, no. 3. — P. 412–442. — DOI: 10.1086/285547. , , .
- The role of agent-based models in wildlife ecology and management // Ecological Modelling. — 2011. — V. 222, no. 8. — P. 1544–1556. — DOI: 10.1016/j.ecolmodel.2011.01.020. , , , .
- The analytical solutions of the harvesting Verhulst’s evolution equation // Ecological Modelling. — 2017. — V. 360. — P. 189–193. — DOI: 10.1016/j.ecolmodel.2017.06.021. , .
- Spatiotemporal complexity of biological invasion in a space-and time-discrete predator–prey system with the strong Allee effect // Ecological Complexity. — 2012. — V. 9. — P. 16–32. — DOI: 10.1016/j.ecocom.2011.11.004. — MathSciNet: MR3078503. , , .
- Persistence aspect of a predator–prey model with disease in the prey // Differential Equations and Dynamical Systems. — 2016. — V. 24, no. 2. — P. 173–188. — DOI: 10.1007/s12591-014-0213-y. — MathSciNet: MR3486010. .
- Mathematical biology. — Berlin – Heidelberg – New York: Springer, 2002. .
- How humans shape wolf behavior in Banff and Kootenay National Parks, Canada // Ecological Modelling. — 2010. — V. 221, no. 19. — P. 2374–2387. — DOI: 10.1016/j.ecolmodel.2010.06.019. , , , , .
- Chaos and Order in Population Dynamics: Modeling, Analysis, Forecast. — Saarbrucken: LAP Lambert Academic Publishing, 2012. .
- Mode change in thedynamics of exploited limited population with age structure // Nonlinear Dynamics. — 2018. — DOI: 10.1007/s11071-018-4396-6. , , , .
- Dynamics of populations with delayed density dependent birth rate regulation // Ecological Modelling. — 2016. — V. 340. — P. 64–73. — DOI: 10.1016/j.ecolmodel.2016.09.005. , , .
- An outline of the dynamics of animal populations // Australian Journal of Zoology. — 1954. — V. 2. — P. 9–65. — DOI: 10.1071/ZO9540009. .
- Supplement: the Balance of Animal Populations // Journal of Animal Ecology. — 1933. — V. 2, no. 1. — P. 131–178. — DOI: 10.2307/954. .
- An outline of the dynamics of animal populations // Australian Journal of Zoology. — 1954. — V. 2. — P. 9–65. — DOI: 10.1071/ZO9540009. .
- The Balance of Animal Populations // Proceedings of the Zoological Society of London. — 1935. — V. 105, no. 3. — P. 551–598. — DOI: 10.1111/j.1096-3642.1935.tb01680.x. , .
- Metapopulation theory and habitat fragmentation: a review of holarctic breeding bird studies // Landscape Ecology. — 1991. — V. 5, no. 2. — P. 93–106. — DOI: 10.1007/BF00124663. .
- Discrete models for the formation and evolution of spatial structure in dissipative systems // Phys. Rev. A. — 1984. — V. 33, no. 6. — P. 4219–4231. — DOI: 10.1103/PhysRevA.33.4219. — ads: 1986PhRvA..33.4219O. , .
- The Biology of Population Growth. — NY: Alfred A. Knopf, 1925. .
- On the rate of growth of the population of the United States since 1790 and its mathematical representation // ProP. National Acad. of Sci. USA. — 1920. — V. 6. — P. 275–288. — DOI: 10.1073/pnas.6.6.275. — ads: 1920PNAS....6..275P. , .
- Control of multistability // Physics Reports. — 2014. — V. 540. — P. 167–218. — DOI: 10.1016/j.physrep.2014.02.007. — MathSciNet: MR3225716. — ads: 2014PhR...540..167P. , .
- Optimal foraging theory: a critical review // Annual review of ecology and systematics. — 1984. — V. 15, no. 1. — P. 523–575. — DOI: 10.1146/annurev.es.15.110184.002515. .
- Harvesting wildlife affected by climate change: a modelling and management approach for polar bears // Journal of Applied Ecology. — 2017. — V. 54, no. 5. — P. 1534–1543. — DOI: 10.1111/1365-2664.12864. , , , , .
- Impact of harvest on survival of a heavily hunted game bird population // Wildlife Research. — 2010. — V. 37, no. 5. — P. 392–400. — DOI: 10.1071/WR09177. , , , , .
- Graphical representation and stability conditions of predator–prey interaction // Amer. Natur. — 1963. — V. 97. — P. 209–223. — DOI: 10.1086/282272. , .
- Disease control through provision of alternative food to predator: a model based study // International Journal of Dynamics and Control. — 2016. — V. 4, no. 3. — P. 239–253. — DOI: 10.1007/s40435-014-0099-0. — MathSciNet: MR3536135. .
- A time-delay model for prey-predator growth with stage structure // Canadian Applied Mathematics Quarterly. — 2003. — V. 11, no. 3. — P. 293–302. — MathSciNet: MR2132201. , .
- Stability and Hopf bifurcation of a diffusive predatorprey model with hyperbolic mortality // Complexity. — 2016. — V. 21, no. S1. — P. 34–43. — DOI: 10.1002/cplx.21708. — MathSciNet: MR3550625. , , .
- Shift of critical points in the parametrically modulated Hénon map with coexisting attractors // Physics Letters A. — 2002. — V. 304, no. 1–2. — P. 21–29. — DOI: 10.1016/S0375-9601(02)01349-X. — MathSciNet: MR1936760. — ads: 2002PhLA..304...21S. , , .
- A review of predator diet effects on prey defensive responses // Chemoecology. — 2016. — V. 26, no. 3. — P. 83–100. — DOI: 10.1007/s00049-016-0208-y. , .
- A paradox in discrete single species population dynamics with harvesting/thinning // Mathematical Biosciences. — 2008. — V. 214. — P. 63–69. — DOI: 10.1016/j.mbs.2008.06.004. — MathSciNet: MR2446613. .
- Double-well chimeras in 2D lattice of chaotic bistable elements // Commun. Nonlinear Sci. Numer. Simulat. — 2018. — V. 54. — P. 50–61. — DOI: 10.1016/j.cnsns.2017.05.017. — MathSciNet: MR3671400. — ads: 2018CNSNS..54...50S. , , , , .
- The hydra effect in predator–prey models // Journal of mathematical biology. — 2012. — V. 64, no. 1-2. — P. 341–360. — DOI: 10.1007/s00285-011-0416-6. — MathSciNet: MR2864847. , .
- Predation, competition, and prey communities: a review of field experiments // Annual Review of Ecology and Systematics. — 1985. — V. 16, no. 1. — P. 269–311. — DOI: 10.1146/annurev.es.16.110185.001413. , , , , .
- Random dispersal in theoretical populations // Biometrika. — 1951. — V. 38. — P. 196–218. — DOI: 10.1093/biomet/38.1-2.196. — MathSciNet: MR0043440. .
- Consequences of sex-selective harvesting and harvest refuges in experimental meta-populations // Oikos. — 2014. — V. 123, no. 3. — P. 309–314. — DOI: 10.1111/j.1600-0706.2013.00662.x. , , .
- A simple predator–prey model of exploited marine fish populations incorporating alternative prey // ICES Journal of Marine Science. — 1995. — V. 53. — P. 615–628. — DOI: 10.1006/jmsc.1996.0082. , .
- Global dynamics and controllability of a harvested preypredator system // Journal of Biological Systems. — 2001. — V. 9, no. 1. — P. 67–79. — DOI: 10.1142/S0218339001000311. , , .
- Hybrid modelling in biology: a classification review // Mathematical Modelling of Natural Phenomena. — 2016. — V. 11, no. 1. — P. 37–48. — DOI: 10.1051/mmnp/201611103. — MathSciNet: MR3452634. , .
- Bifurcation and stability analysis in predator–prey model with a stagestructure for predator // Nonlinear Dynamics. — 2009. — V. 58, no. 3. — P. 497–513. — DOI: 10.1007/s11071-009-9495-y. — MathSciNet: MR2562945. , , .
- Autocorrelated rates of change in animal populations and their relationship to precipitation // Conservation biology. — 1998. — V. 121, no. 4. — P. 801–808. — DOI: 10.1046/j.1523-1739.1998.97140.x. .
- Optimal harvesting of an age-structured, two-sex herbivore–plant system // Ecological Modelling. — 2014. — V. 272. — P. 348–361. — DOI: 10.1016/j.ecolmodel.2013.09.029. , , .
- A discrete predator-prey system with age-structure for predator and natural barriers for prey // Mathematical Modelling and Numerical Analysis. — 2001. — V. 35, no. 4. — P. 675–690. — DOI: 10.1051/m2an:2001102. — MathSciNet: MR1862874. , .
- Instabilities and Patterns in Zooplankton-Phytoplankton Dynamics: Effect of Spatial Heterogeneity / Mathematical Modelling and Scientific Computation. — Berlin: Springer, 2012. — P. 229–236. — MathSciNet: MR3525134. , , .
- Dissipative structures and patchiness in spatial distribution of plants // Ecol. Modelling. — 1990. — no. 52. — P. 207–223. — DOI: 10.1016/0304-3800(90)90016-A. , .
- Dynamics of Coupled Nonlinear Maps and Its Application to Ecological Modeling // Applied mathematic and computation. — 1997. — V. 82. — P. 137–179. — DOI: 10.1016/S0096-3003(96)00027-6. — MathSciNet: MR1429224. , .
- A matrix model for forest management // Biometrics. — 1969. — V. 25, no. 3. — P. 309–315. — DOI: 10.2307/2528791. .
- Population Ecology: First Principles. — Princeton (NJ): PrinP. Univ. Press, 2003. , .
- The natural control of population balance in the knapweed gall-fly (Urophora jaceana) // Journal of Animal Ecology. — 1947. — V. 16. — P. 139–187. — DOI: 10.2307/1493. .
- Innate antipredator responses of Arctic charr (Salvelinus alpinus) depend on predator species and their diet // Behavioral Ecology and Sociobiology. — 2003. — V. 55, no. 1. — P. 1–10. — DOI: 10.1007/s00265-003-0670-8. , .
- Spatial and temporal structure in systems of coupled nonlinear oscillators // Phys. Rev. A. — 1986. — V. 30, no. 4. — P. 2047–2055. — DOI: 10.1103/PhysRevA.30.2047. — ads: 1984PhRvA..30.2047W. , .
- Predictions from simple predator–prey theory about impacts of harvesting forage fishes // Ecological modelling. — 2016. — V. 337. — P. 272–280. — DOI: 10.1016/j.ecolmodel.2016.07.014. , , , , .
- The ontogenetic niche and species interactions in size-structured populations // Annual review of ecology and systematics. — 1984. — V. 15, no. 1. — P. 393–425. — DOI: 10.1146/annurev.es.15.110184.002141. , .
- An Analysis of Discrete Stage-Structured Prey and Prey–Predator Population Models // Discrete Dynamics in Nature and Society. — 2017. — V. 2017. — 9475854. — DOI: 10.1155/2017/9475854. — MathSciNet: MR3641856. .
- From chaos to chaos. An analysis of a discrete age-structured prey-predator model // Journal of Mathematical Biology. — 2001. — V. 43, no. 6. — P. 471–500. — DOI: 10.1007/s002850100101. — MathSciNet: MR1874399. .
- The role of harvesting in age-structured populations: disentangling dynamic and age truncation effects // Theoretical population biology. — 2012. — V. 82, no. 4. — P. 348–354. — DOI: 10.1016/j.tpb.2011.12.008. , , .
- Correlated cycles of snowshoe hares and Dall’s sheep lambs // Can. J. Zool. — 2006. — V. 84. — P. 736–743. — DOI: 10.1139/z06-051. , , .
- Breeding structure of population in relation to speciation // Amer. Natur. — 1940. — V. 74. — P. 232–248. — DOI: 10.1086/280891. .
- Evolution and the Genetics of Population. The Theory of Gene Frequencies. — Chicago: Univ. Chicago Press, 1969. .
- Sudden Shift Ecological Systems: Intermittency and Transients in the Coupled Riker Population Model // Bulletin of Mathematical Biology. — 2008. — V. 70. — P. 1013–1031. — DOI: 10.1007/s11538-007-9288-8. — MathSciNet: MR2391177. , .
- Global dynamics of a predator–prey model with time delay and stage structure for the prey // Nonlinear Analysis: Real World Applications. — 2011. — V. 12, no. 4. — P. 2151–2162. — DOI: 10.1016/j.nonrwa.2010.12.029. — MathSciNet: MR2801008. .
- Why the population of the northern fur seals (Callorhin usursinus) of Tyuleniy Island does not recover following the harvest ban: analysis of 56 years of observation data // Ecological Modelling. — 2017. — V. 363. — P. 57–67. — DOI: 10.1016/j.ecolmodel.2017.08.027. , , , .
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"
Copyright © 2009–2024 Институт компьютерных исследований