Все выпуски

Анализ численного метода решения задачи о распространении пламени по вертикальной поверхности горючего материала

 pdf (18693K)  / Аннотация

Список литературы:

  1. А. А. Карпов, А. А. Шаклеин, А. А. Болкисев, М. А. Корепанов. К расчету скорости распространения пламени по поверхности полимерного материала. Влияние кинетики газофазной реакции // Химическая физика и мезоскопия. — 2016. — Т. 18, № 4. — С. 501–508.
    • A. A. Karpov, A. A. Shaklein, A. A. Bolkisev, M. A. Korepanov. On the prediction of the flame spread rate over polymer fuel surface. Effect of the gas-phase reaction kinetics // Chemical kinetics and mesoscopy. — 2016. — V. 18, no. 4. — P. 501–508.
  2. Р. И. Нигматулин. Основы механики гетерогенных сред. — М: Наука, 1978. — 336 с.
    • R. I. Nigmatulin. Heterogeneous medium mechanics theory. — Moscow: Nauka, 1978. — 336 p. — in Russian. — MathSciNet: MR0518814.
  3. А. В. Сафронов. Оценка точности и сравнительный анализ разностных схем сквозного счета повышенного порядка // Вычислительные методы и программирование. — 2010. — Т. 11. — С. 137–143.
    • A. V. Safronov. Accuracy estimation and comparative analysis of difference schemes of high-order approximation // Numerical Methods and Programming. — 2010. — V. 11. — P. 137–143.
  4. А. А. Шаклеин, А. А. Карпов, М. А. Корепанов. Моделирование распространения пламени по вертикальной поверхности горючего материала. Оценка вклада радиационного теплопереноса // Химическая физика и мезоскопия. — 2014. — Т. 16, № 2. — С. 226–234.
    • A. A. Shaklein, A. A. Karpov, M. A. Korepanov. Simulation of the upward flame spread. Radiative heat transfer evaluation // Chemical kinetics and mesoscopy. — 2014. — V. 16, no. 2. — P. 226–234.
  5. S. Bhattacharjee, M. D. King, C. Paolini. Structure of downward spreading flames: a comparison of numerical simulation, experimental results and a simplified parabolic theory // Combustion Theory and Modelling. — 2004. — V. 8, no. 1. — P. 23–39. — DOI: 10.1088/1364-7830/8/1/002. — ads: 2004CTM.....8...23B.
  6. B. Cockburn, C. Jonhson, C.-W. Shu, E. Tamdor. Advanced numerical approximation of nonlinear hyperbolic equations. — Springer, 1998. — 454 p. — MathSciNet: MR1729305.
  7. J. L. de Ris, G. H. Markstein, L. Orloff, P. A. Beaulieu. Similarity of turbulent wall fire // Fire safety science. — 2003. — V. 7. — P. 259–270. — DOI: 10.3801/IAFSS.FSS.7-259.
  8. D. D. Drysdale, A. J. R. Macmillan. Flame spread on inclined surfaces // Fire safety journal. — 1992. — V. 18. — P. 245–254. — DOI: 10.1016/0379-7112(92)90018-8.
  9. J. H. Ferzinger, M. Peric. Computational methods for fluid dynamics. — Springer, 2002. — 426 p. — MathSciNet: MR1745618.
  10. C. Fureby, C. Lofstrom. Large-eddy simulations of bluff body stabilized flames / Twenty-Fifth Symposium (Internaional) on Combustion, The Combustion Institute. — 1994. — P. 1257–1264.
  11. C. Gualtieri, A. Angeloudis, F. Bombardelli, S. Jha, T. Stoesser. On the values for the turbulent Schmidt number in environmental flows // Fluids. — 2017. — V. 2, no. 2. — 27 p. — DOI: 10.3390/fluids2020017.
  12. Y. Hasemi. Thermal modeling of upward wall flame spread / Fire Safety Science: Proceedings of the First International Symposium. — 1985. — P. 87–96.
  13. R. I. Issa. Solution of the implicitly discretised fluid flow equations by operator-splitting // Journal of Computational Physics. — 1985. — V. 62. — P. 40–65. — DOI: 10.1016/0021-9991(86)90099-9. — MathSciNet: MR0825890. — ads: 1986JCoPh..62...40I.
  14. F. Jiang, J. L. de Ris, M. M. Khan. Absorption of thermal energy in PMMA by in-depth radiation // Fire Safety Journal. — 2009. — V. 44. — P. 106–112. — DOI: 10.1016/j.firesaf.2008.04.004.
  15. A. Karpov, A. Shaklein, M. Korepanov, A. Galat. Numerical Study of the Radiative and Turbulent Heat Flux Behavior of Upward Flame Spread Over PMMA / Fire Science and Technology 2015. The Proceedings of 10th Asia-Oceania Symposium on Fire Science and Technology. — 2016. — P. 841–848.
  16. F. P. Karrhorm. Numerical modelling of diesel spray injection, turbulence interaction and combustion. — Goteborg: Chalmers University of Technology, 2008. — 110 p. — diss. . . . PhD.
  17. I. T. Leventon, S. I. Stoliarov. Evolution of flame to surface heat flux during upward flame spread on poly(methyl methacrylate) // Proceedings of the Combustion Institute. — 2013. — V. 34. — P. 2523–2530. — DOI: 10.1016/j.proci.2012.06.051.
  18. F. B. Magnussen, B. H. Hjertager. On mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion / Symposium (International) on Combustion. — 1977. — P. 719–729.
  19. F. R. Menter, M. Kuntz, R. Langtry. Ten years of industrial experience with the SST turbulence model // Turbulence, Heat and Mass Transfer. — 2003. — V. 4. — P. 625–632.
  20. M. F. Modest. Radiative heat transfer. — Academic Press, 2003. — 822 p.
  21. V. Novozhilov, P. Joseph, K. Ishiko, T. Shimada, H. Wang, J. Liu. Polymer combustion as a basis for hybrid propulsion: a comprehensive review and new numerical approaches // Energies. — 2011. — V. 4. — P. 1779–1839. — DOI: 10.3390/en4101779.
  22. S. V. Patankar. Numerical heat transfer and fluid flow. — CRC Press, 1980. — 214 p.
  23. J. Quintiere, M. Harkleroad, Y. Hasemi. Wall Flames and implications for Upward Flame Spread // Combustion Science and Technology. — 1986. — V. 48, no. 3–4. — P. 191–222. — DOI: 10.1080/00102208608923893.
  24. N. Ren, Y. Wang, A. Trouve. Large eddy simulation of vertical turbulent wall fires / The 9th Asia-Oceania Symposium on Fire Science and Technology. — 2013. — P. 443–452.
  25. C. M. Rhie, W. L. Chow. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation / AIAA/ASME 3rd joint thermophysics, fluids, plasma and heat transfer coference. — 1982. — P. 0998–1–0998–12.
  26. J. Shi, C. Hu, C.-W. Shu. A technique of treating negative weights in WENO schemes // Journal of Computational Physics. — 2002. — V. 175. — P. 108–127. — DOI: 10.1006/jcph.2001.6892. — ads: 2002JCoPh.175..108S.
  27. C.-W. Shu. High orded weighted essentially nonoscillatory schemes for convection dominanted problems // SIAM Review. — 2009. — V. 51, no. 1. — P. 82–126. — DOI: 10.1137/070679065. — MathSciNet: MR2481112. — ads: 2009SIAMR..51...82S.
  28. T. Steinhaus. Evaluation of the thermophysical properties of poly(methylmethacrylate): a reference material for the development of a flammability test for micro-gravity environments. — The University of Maryland, 1999. — 194 p. — diss. . . . MSc.
  29. P. K. Sweby. High resolution schemes using flux limiters for hyperbolic conservation laws // SIAM Journal on Numerical Analysis. — 1984. — V. 21, no. 5. — P. 995–1011. — DOI: 10.1137/0721062. — MathSciNet: MR0760628. — ads: 1984SJNA...21..995S.
  30. H. Y. Wang, B. Chateil. Numerical simulation of wind-aided flame spread over horizontal surface of condensed fuel in a confined channel // International journal of on engineering performance-based fire codes. — 2007. — V. 9, no. 2. — P. 65–77.
  31. J. Warnatz, U. Maas, R. W. Dibble. Combustion: physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation. — Springer, 2006. — 389 p.
  32. H. G. Weller, G. Tabor, H. Jasak, C. Fureby. A tensorial approach to computational continuum mechanics using object-oriented techniques // Computers in physics. — 1998. — V. 12, no. 6. — P. 620–631. — DOI: 10.1063/1.168744. — ads: 1998ComPh..12..620W.
  33. F. A. Williams. Combustion theory. — Princeton University, 1985. — 699 p.
  34. D. A. Yoder. Comparison of Turbulent Thermal Diffusivity and Scalar Variance Models / 54th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum. — 2016. — 22 p. — AIAA 2016-1561.
  35. W. R. Zeng, S. F. Li, W. K. Chow. Review on chemical reactions of burning poly(methyl methacrylate) PMMA // Journal of Fire Sciences. — 2002. — V. 20. — P. 401–433.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.