Анализ межатомных потенциалов для моделирования вакансионной диффузии в концентрированных сплавах Fe–Cr

 pdf (1532K)  / Аннотация

Список литературы:

  1. В. А. Печенкин, А. Д. Чернова, В. Л. Молодцов, Г. В. Лысова, Г. А. Эпов. Радиационно-индуцированная сегрегация и свойства конструкционных материалов под облучением // Ядерная физика и инжиниринг. — 2013. — Т. 4, № 5. — С. 443–461.
    • V. A. Pechenkin, A. D. Chernova, V. L. Molodtsov, G. V. Lysova, G. A. Epov. Radiation Induced Segregation and the Properties of Structural Materials under Irradiation // Yadernaya fizika i inzhiniring. — 2013. — V. 4, no. 5. — P. 443–461. — in Russian.
  2. G. J. Ackland, M. I. Mendelev, D. J. Srolovitz, S. Han, A. V. Barashev. Development of an interatomic potential for phosphorus impurities in α-iron // J. Phys.: Condens. Matter. — 2004. — V. 16, no. 27. — P. 2629–2642. — DOI: 10.1088/0953-8984/16/27/003.
  3. T. R. Allen, L. Tan, J. Gan, G. Gupta, G. S. Was, E. A. Kenik, S. Shutthanandan, S. Thevuthasan. Microstructural development in advanced ferritic–martensitic steel HCM12A // J. Nucl. Mater. — 2006. — V. 351, no. 1–3. — P. 174–186. — DOI: 10.1016/j.jnucmat.2006.02.014.
  4. G. Bonny, D. Terentyev, L. Malebra. Identification and characterization of Cr-rich precipitates in FeCr alloys: An atomistic study // Comp. Mater. Sci. — 2008. — V. 42, no. 1. — P. 107–112. — DOI: 10.1016/j.commatsci.2007.06.017.
  5. G. Bonny, R. C. Pasianot, D. Terentyev, L. Malebra. Iron chromium potential to model high-chromium ferritic alloys // Phil. Mag. — 2011. — V. 91, no. 12. — P. 1724–1746. — DOI: 10.1080/14786435.2010.545780.
  6. A. W. Bowen, G. M. Leak. Diffusion in Bcc iron base alloys // Metall. Trans. — 1970. — V. 1, no. 10. — P. 2767–2773.
  7. R. Braun, M. Feller-Kniepmeier. Diffusion of chromium in α-iron // Phys. Stat. Sol. A. — 1985. — V. 90, no. 2. — P. 553–561. — DOI: 10.1002/pssa.2210900219.
  8. A. Caro, D. A. Crowson, M. Caro. Classical many-body potential for concentrated alloys and the inversion of order in iron-chromium alloys // Phys. Rev. Lett. — 2005. — V. 95, no. 7. — P. 075702–1–075702–4. — DOI: 10.1103/PhysRevLett.95.075702.
  9. M. S. Daw, M. I. Baskes. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals // Phys. Rev. B. — 1984. — V. 26, no. 12. — P. 6443–6453. — DOI: 10.1103/PhysRevB.29.6443.
  10. S. M. Eich, D. Beinke, G. Schmitz. Embedded-atom potential for an accurate thermodynamic description of the iron–chromium system // Comp. Mater. Sci.. — 2015. — V. 104. — P. 185–192. — DOI: 10.1016/j.commatsci.2015.03.047.
  11. M. W. Finnis, J. E. Sinclair. A simple empirical N-body potential for transition metals // Phil. Mag. — 1984. — V. 50, no. 1. — P. 45–55. — DOI: 10.1080/01418618408244210.
  12. G. Gupta, Z. Jiao, A. N. Ham, J. T. Busby, G. S. Was. Microstructural evolution of proton irradiated T91 // J. Nucl. Mater. — 2006. — V. 351, no. 1–3. — P. 162–173. — DOI: 10.1016/j.jnucmat.2006.02.028.
  13. Z. Jiao, G. S. Was. Segregation behavior in proton- and heavy-ion-irradiated ferritic–martensitic alloys // Acta Mater. — 2011. — V. 59, no. 11. — P. 4467–4481. — DOI: 10.1016/j.actamat.2011.03.070.
  14. O. A. Korchuganova, Z. Jiao, M. Thuvander, A. A. Aleev, S. V. Rogozhkin, T. Boll, T. V. Kulevoy. Microstructural evolution of Fe – 22%Cr model alloy under thermal ageing and ion irradiation conditions studied by atom probe tomography // J. Nucl. Mater. — 2016. — V. 477. — P. 172–177. — DOI: 10.1016/j.jnucmat.2016.05.007.
  15. Z. Lu, R. G. Faulkner, G. S. Was, B. D. Wirth. Irradiation-induced grain boundary chromium microchemistry in high alloy ferritic steels // Scripta Mater. — 2011. — V. 58, no. 10. — P. 878–881.
  16. M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y. Sun, M. Asta. Development of new interatomic potentials appropriate for crystalline and liquid iron // Phil. Mag. A. — 2003. — V. 83, no. 35. — P. 3977–3994. — DOI: 10.1080/14786430310001613264.
  17. I. Mirebeau, M. Hennion, G. Parette. First measurement of short-range-order inversion as a function of concentration in a transition alloy // Phys. Rev. Lett. — 1984. — V. 53, no. 7. — P. 687–690. — DOI: 10.1103/PhysRevLett.53.687.
  18. P. Olsson, J. Wallenius, C. Domain, K. Nordlund, L. Malerba. Two-band modeling of α-prime phase formation in Fe – Cr // Phys. Rev. B. — 2005. — V. 72, no. 21. — P. 214119–1–214119–4. — DOI: 10.1103/PhysRevB.72.214119.
  19. Y. N. Osetsky, L. K. Beland, R. E. Stoller. Specific features of defect and mass transport in concentrated fcc alloys // Acta Mater. — 2016. — V. 115. — P. 354–371. — DOI: 10.1016/j.actamat.2016.06.018.
  20. Y. N. Osetsky. Atomistic Study of Diffusional Mass Transport in Metals // Defect Diff. Forum. — 2001. — V. 188–190. — P. 71–92. — DOI: 10.4028/www.scientific.net/DDF.188-190.71.
  21. V. A. Pechenkin, V. L. Molodtsov, V. A. Ryabov, D. Terentyev. On the radiation-induced segregation: Contribution of interstitial mechanism in Fe–Cr alloys // J. Nucl. Mater. — 2013. — V. 433, no. 1–3. — P. 372–377. — DOI: 10.1016/j.jnucmat.2012.10.016.
  22. S. Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dynamics // J. Comp. Phys. — 1995. — V. 117, no. 1. — P. 1–19. — DOI: 10.1006/jcph.1995.1039.
  23. Rio E. del, J. M. Sampedro, H. Dogo, M. J. Caturla, M. Caro, A. Caro. Formation energy of vacancies in FeCr alloys: Dependence on Cr concentration // J. Nucl. Mater. — 2011. — V. 408, no. 1. — P. 18–24. — DOI: 10.1016/j.jnucmat.2010.10.021.
  24. S. V. Rogozhkin, A. A. Nikitin, A. A. Aleev, A. B. Germanov, A. G. Zaluzhnyi. Atom probe study of radiation induced precipitates in Eurofer 97 Ferritic-Martensitic steel irradiated in BOR-60 reactor // Inorg. Mater.: Appl. Res. — 2013. — V. 4, no. 2. — P. 112–118. — DOI: 10.1134/S2075113313020160.
  25. O. Senninger, F. Soisson, E. Martinez, M. Nastar, C. Fu, Y. Brechet. Modeling radiation induced segregation in iron-chromium alloys // Acta Mater. — 2016. — V. 103. — P. 1–11. — DOI: 10.1016/j.actamat.2015.09.058.
  26. A. Stukowski, B. Sadigh, P. Erhart, A. Caro. Efficient implementation of the concentration-dependent embedded atom method for molecular-dynamics and Monte-Carlo simulations // Modelling Simul. Mater. Sci. Eng. — 2009. — V. 17, no. 7. — P. 075005–1–075005–13. — DOI: 10.1088/0965-0393/17/7/075005.
  27. V. Svetukhin, P. L’vov, E. Gaganidze, M. Tikhonchev, C. Dethloff. Kinetics and thermodynamics of Cr nanocluster formation in Fe–Cr system // J. Nucl. Mater. — 2013. — V. 415, no. 2. — P. 205–209. — DOI: 10.1016/j.jnucmat.2011.06.005.
  28. G. S. Was, J. P. Wharry, B. Frisbie, B. D. Wirth, D. Morgan, J. D. Tucker, T. R. Allen. Assessment of radiation-induced segregation mechanisms in austenitic and ferritic–martensitic alloys // J. Nucl. Mater. — 2011. — V. 411, no. 1–3. — P. 41–50. — DOI: 10.1016/j.jnucmat.2011.01.031.
  29. H. J. Wollenberger. Point defects / Physical Metallurgy. — North-Holland, Amsterdam, 1996. — V. 2. — P. 1621–1721. — R. W. Cahn & P. Haasen.

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus