Все выпуски

Исследование влияния антиангиогенной монотерапии на прогрессию гетерогенной опухоли с помощью методов математического моделирования

 pdf (381K)  / Аннотация

Список литературы:

  1. А. В. Гуcев, А. А. Полежаев. Моделирование эволюции клеточной популяции при наличии максимально допустимой суммарной плотности клеток // Кpаткие cообщения по физике ФИАН. 1997. — Т. 11–12. — С. 85.
    • A. V. Gusev, A. A. Polezhaev. Modeling of cell population evolution in presence of maximum permissible total cell density // Teoreticheskaya i matematicheskaya fizika. 1997. — V. 11–12. — P. 85. — in Russian.
  2. И. Б. Петров, А. А. Лобанов. Лекции по вычислительной математике. — Интернет-ун-т информ. технологий, 2006.
    • I. B. Petrov, A. A. Lobanov. Lectures on Computational Mathematics. — Internetun-t inform. tekhnologij, 2006. — in Russian. — MathSciNet: MR0319599.
  3. S. Ait-Oudhia, D. E. Mager, V. Pokuri. Bridging Sunitinib Exposure to Time-to-Tumor Progression in Hepatocellular Carcinoma Patients With Mathematical Modeling of an Angiogenic Biomarker // CPT: Pharmacometrics & Systems Pharmacology. 2016. — V. 5. — P. 297–304. — DOI: 10.1002/psp4.12084.
  4. A. R. A. Anderson, M. A. J. Chaplain. Continuous and discrete mathematical models of tumor-induced angiogenesis // Bulletin of mathematical biology. 1998. — V. 60, no. 5. — P. 857–899. — DOI: 10.1006/bulm.1998.0042. — zbMATH: Zbl 0923.92011.
  5. J. P. Boris, D. L. Book. Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works // Journal of computational physics. 1973. — V. 11, no. 1. — P. 38–69. — DOI: 10.1016/0021-9991(73)90147-2. — zbMATH: Zbl 0251.76004.
  6. B. R. Corr, C. Breed, J. Sheeder, et al. Bevacizumab induced hypertension in gynecologic cancer: Does it resolve after completion of therapy? // Gynecologic Oncology Reports. 2016. — V. 17. — P. 65–68. — DOI: 10.1016/j.gore.2016.06.002.
  7. J. F. de Groot, G. Fuller, A. J. Kumar, et al. Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice // Neuro-oncology. 2010. — V. 12, no. 3. — P. 233–242. — DOI: 10.1093/neuonc/nop027.
  8. J. M. L. Ebos, R. S. Kerbel. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis // Nature reviews Clinical oncology. 2011. — V. 8, no. 4. — P. 210–221. — DOI: 10.1038/nrclinonc.2011.21.
  9. N. Ferrara, H.-P. Gerber, J. LeCouter. The biology of VEGF and its receptors // Nature medicine. 2003. — V. 9, no. 6. — P. 669–676. — DOI: 10.1038/nm0603-669.
  10. J. Folkman. Tumor angiogenesis: therapeutic implications // New england journal of medicine. 1971. — V. 285, no. 21. — P. 1182–1186. — DOI: 10.1056/NEJM197111182852108.
  11. M. Galanopoulos, S. Ladias, X. Tzannetakou, et al. A rectovaginal fistula after treatment with bevacizumab. A dangerous side effect needing emergency treatment // Clinical case reports. 2016. — V. 4, no. 4. — P. 449–450. — DOI: 10.1002/ccr3.523.
  12. Avastin full Prescribing Information. — Genentech Inc. — http://www.gene.com/download/pdf/avastin_prescribing.pdf. — (2015-09-30).
  13. M. G. Ghosn, V. V. Tuchin, K. V. Larin. Depth-resolved monitoring of glucose diffusion in tissues by using optical coherence tomography // Optics letters. 2006. — V. 31, no. 15. — P. 2314–2316. — DOI: 10.1364/OL.31.002314.
  14. A. Giese, R. Bjerkvig, M. E. Berens, M. Westphal. Cost of migration: invasion of malignant gliomas and implications for treatment // Journal of clinical oncology. 2003. — V. 21, no. 8. — P. 1624–1636. — DOI: 10.1200/JCO.2003.05.063.
  15. A. Hawkins-Daarud, R. C. Rockne, A. R. A. Anderson, et al. Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor // Frontiers in oncology. 2013. — V. 3. — P. 66. — DOI: 10.3389/fonc.2013.00066.
  16. H. J. Im, T. S. Kim, S.-Y. Park, et al. Prediction of tumour necrosis fractions using metabolic and volumetric 18F-FDG PET/CT indices, after one course and at the completion of neoadjuvant chemotherapy, in children and young adults with osteosarcoma // European journal of nuclear medicine and molecular imaging. 2012. — V. 39, no. 1. — P. 39–49. — DOI: 10.1007/s00259-011-1936-4. — zbMATH: Zbl 1284.20059.
  17. J. M. Kelm, C. D. Sanchez-Bustamante, E. Ehler, et al. VEGF profiling and angiogenesis in human microtissues // Journal of biotechnology. 2005. — V. 118, no. 2. — P. 213–229. — DOI: 10.1016/j.jbiotec.2005.03.016.
  18. R. S. Kerbel, E. Guerin, G. Francia, et al. Preclinical recapitulation of antiangiogenic drug clinical efficacies using models of early or late stage breast cancer metastatis // The Breast. 2013. — V. 22. — P. S57–S65. — DOI: 10.1016/j.breast.2013.07.011.
  19. O. Keunen, M. Johansson, A. Oudin, et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma // Proceedings of the National Academy of Sciences. 2011. — V. 108, no. 9. — P. 3749–3754. — DOI: 10.1073/pnas.1014480108.
  20. K. J. Kim, B. Li, J. Winer, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo // Letters to Nature. 1993. — V. 362. — P. 841–844. — DOI: 10.1038/362841a0.
  21. J. Kleinheinz, S. Jung, K. Wermker, et al. Release kinetics of VEGF165 from a collagen matrix and structural matrix changes in a circulation model // Head & face medicine. 2010. — V. 6, no. 1. — P. 17. — DOI: 10.1186/1746-160X-6-17.
  22. A. V. Kolobov, A. A. Polezhaev, G. I. Solyanik. The role of cell motility in metastatic cell dominance phenomenon: analysis by a mathematical model // Computational and Mathematical Methods in Medicine. 2000. — V. 3, no. 1. — P. 63–77. — zbMATH: Zbl 0980.92014.
  23. A. V. Kolobov, M. B. Kuznetsov. The study of angiogenesis effect on the growth rate of an invasive tumor using a mathematical model // Russian Journal of Numerical Analysis and Mathematical Modelling. 2013. — V. 28, no. 5. — P. 471–484. — DOI: 10.1515/rnam-2013-0026. — MathSciNet: MR3296416.
  24. A. V. Kolobov, V. V. Gubernov, M. B. Kuznetsov. The study of antitumor efficacy of bevacizumab antiangiogenic therapy using a mathematical model // Russian Journal of Numerical Analysis and Mathematical Modelling. 2015. — V. 30, no. 5. — P. 289–297. — DOI: 10.1515/rnam-2015-0026. — MathSciNet: MR3420393. — zbMATH: Zbl 1325.92046.
  25. G. Lemon, D. Howard, M. J. Tomlinson, et al. Mathematical modelling of tissue-engineered angiogenesis // Mathematical biosciences. 2009. — V. 221, no. 2. — P. 101–120. — DOI: 10.1016/j.mbs.2009.07.003. — MathSciNet: MR2561137. — zbMATH: Zbl 1175.92028.
  26. J. R. Levick. An introduction to cardiovascular physiology. — Butterworth-Heinemann, 2013.
  27. F. Lignet, S. Benzekry, S. Wilson, et al. Theoretical investigation of the efficacy of antiangiogenic drugs combined to chemotherapy in xenografted mice // Journal of theoretical biology. 2013. — V. 320. — P. 86–99. — DOI: 10.1016/j.jtbi.2012.12.013. — MathSciNet: MR3042459.
  28. N. V. Mantzaris, S. Webb, H. G. Othmer. Mathematical modeling of tumor-induced angiogenesis // Journal of mathematical biology. 2004. — V. 49, no. 2. — P. 111–187. — DOI: 10.1007/s00285-003-0262-2. — MathSciNet: MR2145689. — zbMATH: Zbl 1109.92020.
  29. F. Milde, M. Bergdorf, P. Koumoutsakos. A hybrid model for three-dimensional simulations of sprouting angiogenesis // Biophysical journal. 2008. — V. 95, no. 7. — P. 3146–3160. — DOI: 10.1529/biophysj.107.124511. — MathSciNet: MR2283233.
  30. G. Mountzios, G. KePentheroudakislly, P. Carmeliet. Bevacizumab and micrometastases: revisiting the preclinical and clinical rollercoaster // Pharmacology & therapeutics. 2014. — V. 141, no. 2. — P. 117–124. — DOI: 10.1016/j.pharmthera.2013.09.003.
  31. A. Narayana, P. Kelly, J. Golfinos, et al. Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: impact on local control and patient survival: clinical article // Journal of neurosurgery. 2009. — V. 110, no. 1. — P. 173–180. — DOI: 10.3171/2008.4.17492.
  32. M. P `aez-Ribes, E. Allen, J. Hudock, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis // Cancer cell. 2009. — V. 15, no. 3. — P. 220–231. — DOI: 10.1016/j.ccr.2009.01.027.
  33. N. Papadopoulos, J. Martin, Q. Ruan, et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab // Angiogenesis. 2012. — V. 15, no. 2. — P. 171–185. — DOI: 10.1007/s10456-011-9249-6.
  34. Y. Piao, J. Liang, L. Holmes, et al. Acquired resistance to anti-VEGF therapy in glioblastoma is associated with a mesenchymal transition // Clinical Cancer Research. 2013. — V. 19, no. 16. — P. 4392–4403. — DOI: 10.1158/1078-0432.CCR-12-1557.
  35. O. N. Pyaskovskaya, D. L. Kolesnik, A. V. Kolobov, et al. Analysis of growth kinetics and proliferative heterogeneity of lewis lung carcinoma cells growing as unfed culture // Exp. Oncol. 2008. — V. 30, no. 4. — P. 269–275.
  36. K. A. Rejniak. Systems Biology of Tumor Microenvironment. — Springer, 2016.
  37. O. Saut, J.-B. Lagaert, T. Colin, H. M. Fathallah-Shaykh. A multilayer grow-or-go model for GBM: effects of invasive cells and anti-angiogenesis on growth // Bulletin of mathematical biology. 2014. — V. 76, no. 9. — P. 2306–2333. — DOI: 10.1007/s11538-014-0007-y. — MathSciNet: MR3255167. — zbMATH: Zbl 1300.92043.
  38. H. Vander, G. Matthew, L. C. Cantley, C. B. Thompson. Understanding the Warburg effect: the metabolic requirements of cell proliferation // Science. 2009. — V. 324, no. 5930. — P. 1029–1033. — DOI: 10.1126/science.1160809.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.