Все выпуски

Кинетическая модель репарации двунитевых разрывов ДНК в первичных фибробластах человека при действии редкоионизирующего излучения с различной мощностью дозы

 pdf (2412K)  / Аннотация

Список литературы:

  1. И. B. Озеров, П. С. Еремин, А. Н. Осипов, И. И. Еремин, А. Д. Цветкова, С. С. Гусева, К. Ю. Иванова, О. И. Гавриленко, М. В. Пустовалова, Н. М. Сметанина, А. К. Грехова, Н. Л. Лазарева, А. А. Пулин, О. А. Максимова, А. В. Гордеев, А. Ю. Бушманов, К. B. Котенко. Особенности изменения числа фокусов белков γH2AX и RAD51 в фибробластах кожи человека, подвергавшихся пролонгированному воздействию низкоинтенсивного рентгеновского излучения // Саратовский научно-медицинский журнал. — 2014. — Т. 10, № 4. — С. 935–941.
  2. N. Alessio, S. Del Gaudio, S. Capasso, G. Di Bernardo, S. Cappabianca, M. Cipollaro, G. Peluso, U. Galderisi. Low dose radiation induced senescence of human mesenchymal stromal cells and impaired the autophagy process / Oncotarget. — 2014.
  3. L. Bee, S. Fabris, R. Cherubini, M. Mognato, L. Celotti. The efficiency of homologous recombination and non-homologous end joining systems in repairing double-strand breaks during cell cycle progression // PLOS One. — 2013. — V. 8(7). — P. e69061. — ads: 2013PLoSO...869061B.
  4. M. Belli, R. Cherubini, M. Dalla Vecchia, V. Dini, G. Moschini, C. Signoretti, G. Simone, M. Tabochini, P. Tiveron. DNA DSB induction and rejoining in V79 cells irradiated with light ions: a constant field gel electrophoresis study // Int J. Rad Biol. — 2000. — V. 76, no. 8. — P. 1095–1104. — DOI: 10.1080/09553000050111569.
  5. N. Bitomsky, T.G. Hofmann. Apoptosis and autophagy: Regulation of apoptosis by DNA damage signalling — roles of p53, p73 and HIPK2 // FEBS J. — 2009. — V. 276, no. 21. — P. 6074–6083. — DOI: 10.1111/j.1742-4658.2009.07331.x.
  6. O. A. Botrugno, T. Robert, F. Vanoli, M. Foiani, S. Minucci. Molecular pathways: old drugs define new pathways: non-histone acetylation at the crossroads of the DNA damage response and autophagy // Clin Cancer Res. — 2012. — V. 18, no. 9. — P. 2436–2442. — DOI: 10.1158/1078-0432.CCR-11-0767.
  7. F. A. Cucinotta, H. Nikjoo, P. O'Neill, D. T. Goodhead. Kinetics of DSB rejoining and formation of simple chromosome exchange aberrations // Int. J. Radiat. Biol. — 2000. — V. 76, no. 11. — P. 1463–1474. — DOI: 10.1080/09553000050176225.
  8. F. A. Cucinotta, J. M. Pluth, J. A. Anderson, J. V. Harper, P. O'Neill. Biochemical kinetics model of DSB repair and induction of gamma-H2AX foci by non-homologous end joining // Radiat. Res. — 2008. — V. 169, no. 2. — P. 214–222. — DOI: 10.1667/RR1035.1. — ads: 2008RadR..169..214C.
  9. P. E. Gill, W. Murray. Algorithms for the solution of the nonlinear least-squares problem // SIAM Journal on Numerical Analysis. — 1978. — V. 15, no. 5. — P. 977–992. — DOI: 10.1137/0715063. — MathSciNet: MR0507558. — zbMATH: Zbl 0401.65042. — ads: 1978SJNA...15..977G.
  10. A. A. Goodarzi, P. Jeggo, M. Lobrich. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax // DNA Repair (Amst.). — 2010. — V. 9. — P. 1273–1282. — DOI: 10.1016/j.dnarep.2010.09.013.
  11. M. Guerrero, R. D. Stewart, J. Z. Wang, X. A. Li. Equivalence of the linear–quadratic and two-lesion kinetic models // Phys. Med. Biol. — 2002. — V. 47. — P. 3197–3209. — DOI: 10.1088/0031-9155/47/17/310.
  12. J. W. Harper, S. J. Elledge. The DNA damage response: ten years after // Mol. Cell. — 2007. — V. 28. — P. 739–745. — DOI: 10.1016/j.molcel.2007.11.015.
  13. W. Henning, H. W. Stürzbecher. Homologous recombination and cell cycle checkpoints: Rad51 in tumour progression and therapy resistance // Toxicology. — 2003. — V. 193, no. 1–2. — P. 91–109. — DOI: 10.1016/S0300-483X(03)00291-9.
  14. J. H. Hoeijmakers. Genome maintenance mechanisms for preventing cancer // Nature. — 2001. — V. 411. — P. 366–374. — DOI: 10.1038/35077232. — ads: 2001Natur.411..366H.
  15. S.P. Jackson, J. Bartek. The DNA-damage response in human biology and disease // Nature. — 2009. — V. 461. — P. 1071–1078. — DOI: 10.1038/nature08467. — ads: 2009Natur.461.1071J.
  16. A. Kakarougkas, P. A. Jeggo. DNA DSB repair pathway choice: an orchestrated handover mechanism // Br J. Radiol. — 2014. — V. 87, no. 1035. — P. 20130685. — DOI: 10.1259/bjr.20130685.
  17. C. Kirkby, E. Ghasroddashti, Y. Poirier, M. Tambasco, R. D. Stewart. RBE of kV CBCT radiation determined by Monte Carlo DNA damage simulations // Phys Med Biol. — 2013. — V. 58, no. 16. — P. 5693–5704. — DOI: 10.1088/0031-9155/58/16/5693.
  18. K. V. Kotenko, A. Y. Bushmanov, I. V. Ozerov, D. V. Guryev, N. A. Anchishkina, N. M. Smetanina, E. Y. Arkhangelskaya, N. Y. Vorobyeva, A. N. Osipov. Changes in the number of double-strand DNA breaks in Chinese hamster V79 cells exposed to γ-radiation with different dose rates // Int. J. Mol. Sci. — 2013. — V. 14. — P. 13719–13726. — DOI: 10.3390/ijms140713719.
  19. F. Kraxenberger, K. J. Weber, A. A. Friedl, F. Eckardt-Schupp, M. Flentje, P. Quicken, A. M. Kellerer. DNA double-strand breaks in mammalian cells exposed to gamma-rays and very heavy ions. Fragment-size distributions determined by pulsed-field gel electrophoresis // Radiat Environ Biophys. — 1998. — V. 37, no. 2. — P. 107–115. — DOI: 10.1007/s004110050102.
  20. Y. Kuwahara, T. Oikawa, Y. Ochiai, M. H. Roudkenar, M. Fukumoto, T. Shimura, Y. Ohtake, Y. Ohkubo, S. Mori, Y. Uchiyama, M. Fukumoto. Enhancement of autophagy is a potential modality for tumors refractory to radiotherapy // Cell Death Dis. — 2011. — V. 2. — P. e177. — DOI: 10.1038/cddis.2011.56.
  21. N. Kuzmina, N. Borisov. Handling Complex Rule-Based Models of Mitogenic Cell Signaling (on the Example of ERK Activation upon EGF Stimulation) // Int Proc Chem Biol Environ Eng. — 2011. — V. 5. — P. 76–82.
  22. B. P. Kysela, J. E. Arrand, B. D. Michael. Relative contributions of levels of initial damage and repair of double-strand breaks to the ionizing radiation-sensitive phenotype of the Chinese hamster cell mutant, XR-V15B. Part II. Neutrons // Int. J. Radiat. Biol. — 1993. — V. 64, no. 5. — P. 531–538. — DOI: 10.1080/09553009314551741.
  23. E. L. Leatherbarrow, J. V. Harper, F. A. Cucinotta, P. O’Neill. Induction and quantification of gamma-H2AX foci following low and high LET-irradiation // Int J. Radiat Biol. — 2006. — V. 82, no. 2. — P. 111–118. — DOI: 10.1080/09553000600599783.
  24. M. Löbrich, P. Cooper, B. Rydberg. Joining of correct and incorrect DNA ends at double-strand breaks produced by high-linear energy transfer radiation in human fibroblasts // Radiat Res. — 1998. — V. 150, no. 6. — P. 619–626. — DOI: 10.2307/3579884. — ads: 1998RadR..150..619L.
  25. P. O. Mari, B. I. Florea, S. P. Persengiev, N. S. Verkaik, H. T. Brüggenwirth, M. Modesti, G. Giglia-Mari, K. Bezstarosti, J. A. Demmers, Luider T. M., A. B. Houtsmuller, D. C. van Gent. Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4 // Proc Natl Acad Sci U S A. — 2006. — V. 103, no. 49. — P. 18597–18602. — DOI: 10.1073/pnas.0609061103. — ads: 2006PNAS..10318597M.
  26. D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters // SIAM Journal on Applied Mathematics. — 1963. — V. 11, no. 2. — P. 431–441. — DOI: 10.1137/0111030. — MathSciNet: MR0153071. — zbMATH: Zbl 0112.10505.
  27. Y. Masuda, K. Kamiya. Molecular nature of radiation injury and DNA repair disorders associated with radiosensitivity // Int. J. Hematol. — 2012. — V. 95, no. 3. — P. 239–245. — DOI: 10.1007/s12185-012-1008-y.
  28. L. Metzger, G. Iliakis. Kinetics of DNA double-strand break repair throughout the cell cycle as assayed by pulsed field gel electrophoresis in CHO cells // Int. J. Radiat. Biol. — 1991. — V. 59, no. 6. — P. 1325–39. — DOI: 10.1080/09553009114551201.
  29. V. Michalik, D. Frankenberg. Simple and complex double-strand breaks induced by electrons // Int J. Radiat Biol. — 1994. — V. 66, no. 5. — P. 467–470. — DOI: 10.1080/09553009414551471.
  30. K. J. Millman, M. Aivazis. Python for Scientists and Engineers // Computing in Science & Engineering. — 2011. — V. 13. — P. 9–12. — DOI: 10.1109/MCSE.2011.36.
  31. M. Nakajima, Takench, T. , T. Takeshita, K. Morimoto. 8‐Hydroxydeoxyguanosine in human leukocyte DNA and daily health practice factors: effects of individual alcohol sensitivity // Environ. Health Perspect. — 1996. — V. 104. — P. 1336–1338. — DOI: 10.1289/ehp.961041336.
  32. H. Nikjoo, P. O'Neill, W. E. Wilson, D. V. Goodhead. Computational Approach for Determining the Spectrum of DNA Damage Induced by Ionizing Radiation // Radiat. Res. — 2001. — V. 156, no. 5. — P. 577–583. — DOI: 10.1667/0033-7587(2001)156[0577:CAFDTS]2.0.CO;2. — ads: 2001RadR..156..577N.
  33. H. Nikjoo, L. Lindborg. RBE of low energy electrons and photons // Phys Med Biol. — 2010. — V. 55, no. 10. — P. 165–109. — DOI: 10.1088/0031-9155/55/10/R01.
  34. P. L. Olive, J. P. Banáth, R. E. Durand. Heterogeneity in Radiation-Induced DNA Damage and Repair in Tumor and Normal Cells Measured Using the “Comet” Assay // Radiation Research. — 1990. — V. 122, no. 1. — P. 86–94. — DOI: 10.2307/3577587. — ads: 1990RadR..122...86O.
  35. A. Osipov, E. Arkhangelskaya, A. Vinokurov, N. Smetaninа, A. Zhavoronkov, D. Klokov. DNA Comet Giemsa Staining for Conventional Bright-Field Microscopy // International Journal of Molecular Sciences. — 2014. — V. 15, no. 4. — P. 6086–6095. — DOI: 10.3390/ijms15046086.
  36. O. Ostling, K. J. Johanson. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells // Biochemical and Biophysical Research Communications. — 1984. — V. 123, no. 1. — P. 291–298. — DOI: 10.1016/0006-291X(84)90411-X.
  37. P. O’Neill, E. M. Fielden. Primary free radical processes in DNA // Adv. Radiat. Biol. — 1993. — V. 17. — P. 53–120. — DOI: 10.1016/B978-0-12-035417-7.50005-2.
  38. E. Pielou. An introduction to Mathematical Ecology. — New York: Wiley-Interscience, 1969. — MathSciNet: MR0252051. — zbMATH: Zbl 0259.92001.
  39. A. L. Ponomarev, K. George, F. A. Cucinotta. Generalized time-dependent model of radiation-induced chromosomal aberrations in normal and repair-deficient human cells // Radiat Res. — 2014. — V. 181, no. 3. — P. 284–292. — DOI: 10.1667/RR13303.1. — ads: 2014RadR..181..284P.
  40. C. Redon, D. Pilch, E. Rogakou, O. Sedelnikova, K. Newrock, W. Bonner. Histone H2Avariants H2AX and H2AZ // Curr Opin Genet Dev. — 2002. — V. 12, no. 2. — P. 162–169. — DOI: 10.1016/S0959-437X(02)00282-4.
  41. T. Robert, F. Vanoli, I. Chiolo, G. Shubassi, K. A. Bernstein, R. Rothstein, O. A. Botrugno, D. Parazzoli, A. Oldani, S. Minucci, M. Foiani. HDACs link the DNA damage response, processing of double-strand breaks and autophagy // Nature. — 2011. — V. 471, no. 7336. — P. 74–79. — DOI: 10.1038/nature09803. — ads: 2011Natur.471...74R.
  42. H. Rodriguez-Rocha, A. Garcia-Garcia, M. Panayiotidis, R. Franco. DNA damage and autophagy // Mutat. Res. — 2011. — V. 711, no. 1–2. — P. 158–166. — DOI: 10.1016/j.mrfmmm.2011.03.007.
  43. E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, W. M. Bonner. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139 // J. Biol Chem. — 1998. — V. 273, no. 10. — P. 5858–5868. — DOI: 10.1074/jbc.273.10.5858.
  44. M. S. Sasaki, M. Takata, E. Sonoda, A. Tachibana, S. Takeda. Recombination repair pathway in the maintenance of chromosomal integrity against DNA interstrand crosslinks // Cytogenet Genome Res. — 2004. — V. 104, no. 1–4. — P. 28–34. — DOI: 10.1159/000077463.
  45. O. A. Sedelnikova, E. P. Rogakou, I. G. Panyutin, W. M. Bonner. Quantitative detection of (125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody // Radiat Res. — 2002. — V. 4. — P. 486–492. — DOI: 10.1667/0033-7587(2002)158[0486:QDOIID]2.0.CO;2. — ads: 2002RadR..158..486S.
  46. M. Shrivastav, L. P. De Haro, J. A. Nickoloff. Regulation of DNA double-strand break repair pathway choice // Cell Res. — 2008. — V. 18, no. 1. — P. 134–147. — DOI: 10.1038/cr.2007.111.
  47. E. Strozyk, D. Kulms. The role of AKT/mTOR pathway in stress response to UV-irradiation: implication in skin carcinogenesis by regulation of apoptosis, autophagy and senescence // Int J. Mol Sci. — 2013. — V. 14, no. 8. — P. 15260–15285. — DOI: 10.3390/ijms140815260.
  48. M. Takata, M. Sasaki, E. Sonoda, C. Morrison, M. Hashimoto, H. Utsumi, Y. Yamaguchi-Iwai, A. Shinohara, S. Takeda. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells // EMBO J. — 1998. — V. 17, no. 18. — P. 5497–508. — DOI: 10.1093/emboj/17.18.5497.
  49. R. Taleei, H. Nikjoo. Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle // Mutat. Res. — 2013. — P. 1–7.
  50. R. Taleei, H. Nikjoo. The non-homologous end-joining (NHEJ) pathway for the repair of DNA doublestrand breaks: I. A mathematical model // Radiat. Res. — 2013b. — V. 179, no. 5. — P. 530–539. — DOI: 10.1667/RR3123.1. — ads: 2013RadR..179..530T.
  51. C. Tobias. The repair-misrepair model in radiobiology: comparison to other models // Radiat Res Suppl. — 1985. — V. 8. — P. 77–95.
  52. R. Téoule. Radiation-induced DNA Damage and Its Repair // Int J. of Radiat Biol. — 1987. — V. 51, no. 4. — P. 573–589.
  53. M. Wojewodzka, I. Buraczewska, M. Kruszewski. A modified neutral comet assay: Elimination of lysis at high temperature and validation of the assay with anti-single-stranded DNA antibody // Mutat. Res. — 2002. — V. 518. — P. 9–20. — DOI: 10.1016/S1383-5718(02)00070-0.
  54. Wyman, C. , R. Kanaar. DNA double strand break repair: all’s well that ends well // Ann. Rev. Genet. — 2006. — V. 40. — P. 363–383. — DOI: 10.1146/annurev.genet.40.110405.090451.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.