Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

[ Switch to English ]

Topology-based activity recognition: stratified manifolds and separability in sensor space

 pdf (957K)

While working on activity recognition using wearable sensors for healthcare applications, the main issue arises in the classification of activities. When we attempt to classify activities like walking, sitting, or running from accelerometer and gyroscope data, the signals often overlap and noise complicates the classification process. The existing methods do not have solid mathematical foundations to handle this issue. We started with the standard magnitude approach where one can compute $m =  \sqrt{a^2_1 + a^2_2 + a^2_3}$ from the accelerometer readings, but this approach failed because different activities ended up in overlapping regions. We therefore developed a different approach. Instead of collapsing the 6-dimensional sensor data into simple magnitudes, we keep all six dimensions and treat each activity as a rectangular box in this 6D space. We define these boxes using simple interval constraints. For example, walking occurs when the $x$-axis accelerometer reading is between $2$ and $4$, the $y$-axis reading is between $9$ and $10$, and so on. The key breakthrough is what we call a separability index $s = \frac{d_{\min}^{}}{\sigma}$ that determines how accurately the classification will work. Here dmin represents how far apart the activity boxes are, and $\sigma$ represents the amount of noise present. From this simple idea, we derive a mathematical formula $P(\text{error}) \leqslant (n-1)\exp\left(-\frac{s^2}8\right)$  that predicts the error rate even before initiating the experiment. We tested this on the standard UCI-HAR and WISDM datasets and achieved $86.1 %$ accuracy. The theoretical predictions matched the actual results within $3 %$. This approach outperforms the traditional magnitude methods by $30.6 %$ and explains why certain activities overlap with each other.

Ключевые слова: stratified manifolds, topological separability, human activity recognition, noiseaware classification, 6-D hyper-rectangles, separability index, nerve-complex topology, real-time HAR systems
Цитата: Shriethar N., Muthu M. Topology-based activity recognition: stratified manifolds and separability in sensor space // Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 829-850
Citation in English: Shriethar N., Muthu M. Topology-based activity recognition: stratified manifolds and separability in sensor space // Computer Research and Modeling, 2025, vol. 17, no. 5, pp. 829-850
DOI: 10.20537/2076-7633-2025-17-5-829-850
Creative Commons License Статья доступна по лицензии Creative Commons Attribution-NoDerivs 3.0 Unported License.

Copyright © 2025 Shriethar N., Muthu M.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.