Все выпуски

[ Switch to English ]

Обесшумливание данных динамической флуоресцентной микроскопии при помощи двухэтапного HOSVD-разложения

Как правило, данные конфокальной и многофотонной лазерной сканирующей микроскопии страдают от низкого уровня полезного сигнала и высокого вклада дробового шума, связанного со стохастическим характером испускания фотонов флуорофором. Это осложняет задачу подавления шума и выделения полезного сигнала в таких данных. В настоящее время популярны нейросетевые алгоритмы улучшения изображений, однако они часто представляют собой «черный ящик» и требуют длительного обучения на конкретных наборах данных. В работе предлагается алгоритм подавления шума для данных динамической флуоресцентной микроскопии, опирающийся на наличие пространственно-временных локальных корреляций в полезном сигнале и на отсутствие пространственных корреляций в шумовой компоненте. Сингулярное разложение матриц (SVD), производящее спектральное разложение матрицы ковариации, — распространенный способ низкоранговой аппроксимации двумерных массивов, концентрирующий скоррелированный сигнал в нескольких первых компонентах разложения. Однако данные динамической микроскопии представляют собой трехмерные массивы или тензоры большей размерности, поэтому использование тензорных разложений потенциально может улучшить результат подавления шума по сравнению с обычным SVD. В основе алгоритма — двухэтапное применение усеченного сингулярного разложения высшего порядка (HOSVD) с введением порога для коэффициентов и последующим обратным преобразованием, сначала для локальных трехмерных окон в пространстве TXY (3D-HOSVD), а затем для пространственно объединенных групп трехмерных окон (4D-HOSVD). Для валидации алгоритма используются синтетические данные кальциевой сигнализации в астроцитах, в которых концентрация кальция транслируется в сигнал флуоресценции, значения которого в каждом кадре и каждом пикселе затем служат математическим ожиданием и дисперсией для сэмплирования случайной величины из непрерывного аналога пуассоновского распределения. Проведен анализ чувствительности алгоритма от параметров понижения ранга вдоль размерности временных компонент и группового ранга, длины локального окна и порога коэффициентов разложения. Несмотря на наличие мультипликативного шума, предлагаемый алгоритм демонстрирует значительное улучшение анализируемого сигнала, увеличивая соотношение «сигнал/шум» (PSNR) более чем на 20 дБ. Данный метод не опирается на предположения относительно разреженности или гладкости сигнала и может быть использован в качестве одного из этапов обработки данных динамической флуоресцентной микроскопии для самых различных типов данных.

Ключевые слова: флуоресцентная микроскопия, шумоподавление, HOSVD, понижение размерности
Цитата: Муравлев В.И., Браже А.Р. Обесшумливание данных динамической флуоресцентной микроскопии при помощи двухэтапного HOSVD-разложения // Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 529-542
Citation in English: Muravlev V.I., Brazhe A.R. Denoising fluorescent imaging data with two-step truncated HOSVD // Computer Research and Modeling, 2025, vol. 17, no. 4, pp. 529-542
DOI: 10.20537/2076-7633-2025-17-4-529-542
Creative Commons License Статья доступна по лицензии Creative Commons Attribution-NoDerivs 3.0 Unported License.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.