Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
Обесшумливание данных динамической флуоресцентной микроскопии при помощи двухэтапного HOSVD-разложения
Как правило, данные конфокальной и многофотонной лазерной сканирующей микроскопии страдают от низкого уровня полезного сигнала и высокого вклада дробового шума, связанного со стохастическим характером испускания фотонов флуорофором. Это осложняет задачу подавления шума и выделения полезного сигнала в таких данных. В настоящее время популярны нейросетевые алгоритмы улучшения изображений, однако они часто представляют собой «черный ящик» и требуют длительного обучения на конкретных наборах данных. В работе предлагается алгоритм подавления шума для данных динамической флуоресцентной микроскопии, опирающийся на наличие пространственно-временных локальных корреляций в полезном сигнале и на отсутствие пространственных корреляций в шумовой компоненте. Сингулярное разложение матриц (SVD), производящее спектральное разложение матрицы ковариации, — распространенный способ низкоранговой аппроксимации двумерных массивов, концентрирующий скоррелированный сигнал в нескольких первых компонентах разложения. Однако данные динамической микроскопии представляют собой трехмерные массивы или тензоры большей размерности, поэтому использование тензорных разложений потенциально может улучшить результат подавления шума по сравнению с обычным SVD. В основе алгоритма — двухэтапное применение усеченного сингулярного разложения высшего порядка (HOSVD) с введением порога для коэффициентов и последующим обратным преобразованием, сначала для локальных трехмерных окон в пространстве TXY (3D-HOSVD), а затем для пространственно объединенных групп трехмерных окон (4D-HOSVD). Для валидации алгоритма используются синтетические данные кальциевой сигнализации в астроцитах, в которых концентрация кальция транслируется в сигнал флуоресценции, значения которого в каждом кадре и каждом пикселе затем служат математическим ожиданием и дисперсией для сэмплирования случайной величины из непрерывного аналога пуассоновского распределения. Проведен анализ чувствительности алгоритма от параметров понижения ранга вдоль размерности временных компонент и группового ранга, длины локального окна и порога коэффициентов разложения. Несмотря на наличие мультипликативного шума, предлагаемый алгоритм демонстрирует значительное улучшение анализируемого сигнала, увеличивая соотношение «сигнал/шум» (PSNR) более чем на 20 дБ. Данный метод не опирается на предположения относительно разреженности или гладкости сигнала и может быть использован в качестве одного из этапов обработки данных динамической флуоресцентной микроскопии для самых различных типов данных.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"