Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
Новый подход к самообучению для обнаружения видов деревьев с использованием гиперспектральных и лидарных данных
Точное определение деревьев имеет решающее значение для экологического мониторинга, оценки биоразнообразия и управления лесными ресурсами. Традиционные методы ручного обследования трудоемки и неэффективны на больших территориях. Достижения в области дистанционного зондирования, включая лидар и гиперспектральную съемку, способствуют автоматизированному и точному обнаружению в различных областях.
Тем не менее, эти технологии обычно требуют больших объемов размеченных данных и ручной инженерии признаков, что ограничивает их масштабируемость. Данное исследование предлагает новый метод самообучения (Self-Supervised Learning, SSL) с использованием архитектуры SimCLR для улучшения классификации видов деревьев на основе неразмеченных данных. Модель SSL автоматически обнаруживает сильные признаки, объединяя спектральные данные гиперспектральной съемки со структурными данными лидара, исключая необходимость ручного вмешательства.
Мы оцениваем производительность модели SSL по сравнению с традиционными классификаторами, такими как Random Forest (RF), Support Vector Machines (SVM), а также методами обучения с учителем, используя набор данных конкурса ECODSE, который включает как размеченные, так и неразмеченные образцы видов деревьев на биологической станции Ordway-Swisher во Флориде. Метод SSL показал значительно более высокую эффективность по сравнению с традиционными методами, продемонстрировав точность 97,5% по сравнению с 95,56% для Semi-SSL и 95,03% для CNN при обучении с учителем.
Эксперименты по выборке показали, что техника SSL остается эффективной при меньшем количестве размеченных данных, и модель достигает хорошей точности даже при наличии всего 20% размеченных образцов. Этот вывод демонстрирует практическое применение SSL в условиях недостаточного объема размеченных данных, таких как мониторинг лесов в больших масштабах.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"