Текущий выпуск Номер 7, 2024 Том 16

Все выпуски

[ Switch to English ]

Автоматизированная проверка соответствия соглашений об обработке данных регламенту по защите данных

 pdf (1433K)

В современном мире соблюдение нормативных требований по защите данных, таких как GDPR, является ключевым для организаций. Другой важной проблемой, выявленной при анализе, является то, что соблюдение осложняется сложностью правовых документов и постоянными изменениями в регулировании. В данной статье описываются способы, с помощью которых NLP (обработка естественного языка) способствует упрощению соблюдения GDPR путем автоматического сканирования на соответствие, оценки политик конфиденциальности и повышения уровня прозрачности. Работа не ограничивается исследованием применения NLP для работы с политиками конфиденциальности и улучшения понимания обмена данными с третьими сторонами, но также проводит предварительные исследования для оценки различий между несколькими моделями NLP. В статье описывается реализация и исполнение моделей для выявления той, которая демонстрирует наилучшую производительность по эффективности и скорости автоматизации процесса проверки соответствия и анализа политики конфиденциальности. Кроме того, в исследовании обсуждаются возможности использования автоматических инструментов и анализа данных для соблюдения GDPR, например, создание машиночитаемых моделей, которые помогают в оценке соответствия. Среди моделей, оцененных в нашем исследовании, SBERT показала лучшие результаты на уровне политики с точностью 0,57, прецизионностью 0,78, полнотой 0,83 и F1-метрикой 0,80. Модель BERT продемонстрировала наивысшую производительность на уровне предложений, достигнув точности 0,63, прецизионности 0,70, полноты 0,50 и F1-метрики 0,55. Таким образом, данная статья подчеркивает важность NLP в помощи организациям преодолеть трудности соблюдения GDPR, создавая дорожную карту к более ориентированному на клиента режиму защиты данных. В этом отношении, сравнивая предварительные исследования и демонстрируя производительность лучших моделей, работа способствует усилению мер по соблюдению и защите прав личности в киберпространстве.

Ключевые слова: аудит соответствия, NLP (обработка естественного языка), DPA (соглашение об обработке данных), GDPR (общий регламент по защите данных), конфиденциальность, SBERT, BERT, GPT
Цитата: Оконича О., Садовых А. Автоматизированная проверка соответствия соглашений об обработке данных регламенту по защите данных // Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1667-1685
Citation in English: Okonicha O., Sadovykh A. NLP-based automated compliance checking of data processing agreements against General Data Protection Regulation // Computer Research and Modeling, 2024, vol. 16, no. 7, pp. 1667-1685
DOI: 10.20537/2076-7633-2024-16-7-1667-1685
Creative Commons License Статья доступна по лицензии Creative Commons Attribution-NoDerivs 3.0 Unported License.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.