Все выпуски

[ Switch to English ]

Оптимизация словаря команд на основе статистического критерия близости в задаче распознавания невербальной речи

 pdf (531K)

В исследовании мы сосредоточились на задаче классификации невербальной речи для разработки интерфейса «мозг–компьютер» (ИМК) на основе электроэнцефалографии (ЭЭГ), который будет способен помочь людям с ограниченными возможностями и расширить возможности человека в повседневной жизни. Ранее наши исследования показали, что беззвучная речь для некоторых слов приводит к почти идентичным распределениям ЭЭГ-данных. Это явление негативно влияет на точность классификации нейросетевой модели. В этой статье предлагается метод обработки данных, который различает статисти- чески удаленные и неразделимые классы данных. Применение предложенного подхода позволяет достичь цели максимального увеличения смысловой нагрузки словаря, используемого в ИМК.

Кроме того, мы предлагаем статистический прогностический критерий точности бинарной классификации слов в словаре. Такой критерий направлен на оценку нижней и верхней границ поведения классификаторов только путем измерения количественных статистических свойств данных (в частности, с использованием метода Колмогорова – Смирнова). Показано, что более высокие уровни точности классификации могут быть достигнуты за счет применения предложенного прогностического критерия, позволяющего сформировать оптимизированный словарь с точки зрения семантической нагрузки для ИМК на основе ЭЭГ. Кроме того, использование такого обучающего набора данных для задач классификации по словарю обеспечивает статистическую удаленность классов за счет учета семантических и фонетических свойств соответствующих слов и улучшает поведение классификации моделей распознавания беззвучной речи.

Ключевые слова: интерфейс «мозг–компьютер», ЭЭГ, классификация невербальной речи, графовый алгоритм выбора словаря, ИМК, оптимизация глубокого обучения, распознавание невербальной речи, статистический критерий близости
Цитата: Бернадотт А.К., Мазурин А.Д. Оптимизация словаря команд на основе статистического критерия близости в задаче распознавания невербальной речи // Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 675-690
Citation in English: Bernadotte A., Mazurin A.D. Optimization of the brain command dictionary based on the statistical proximity criterion in silent speech recognition task // Computer Research and Modeling, 2023, vol. 15, no. 3, pp. 675-690
DOI: 10.20537/2076-7633-2023-15-3-675-690
Creative Commons License Статья доступна по лицензии Creative Commons Attribution-NoDerivs 3.0 Unported License.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.