Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
Image noise removal method based on nonconvex total generalized variation and primal-dual algorithm
In various applications, i. e., astronomical imaging, electron microscopy, and tomography, images are often damaged by Poisson noise. At the same time, the thermal motion leads to Gaussian noise. Therefore, in such applications, the image is usually corrupted by mixed Poisson – Gaussian noise.
In this paper, we propose a novel method for recovering images corrupted by mixed Poisson – Gaussian noise. In the proposed method, we develop a total variation-based model connected with the nonconvex function and the total generalized variation regularization, which overcomes the staircase artifacts and maintains neat edges.
Numerically, we employ the primal-dual method combined with the classical iteratively reweighted $l_1$ algorithm to solve our minimization problem. Experimental results are provided to demonstrate the superiority of our proposed model and algorithm for mixed Poisson – Gaussian removal to state-of-the-art numerical methods.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"