Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
Метод контрастного семплирования для предсказания библиографических ссылок
В работе рассматривается задача поиска в научной статье фрагментов с недостающими библиографическими ссылками с помощью автоматической бинарной классификации. Для обучения модели предложен метод контрастного семплирования, новшеством которого является рассмотрение контекста ссылки с учетом границ фрагмента, максимально влияющего на вероятность нахождения в нем библиографической ссылки. Обучающая выборка формировалась из автоматически размеченных семплов — фрагментов из трех предложений с метками классов «без ссылки» и «со ссылкой», удовлетворяющих требованию контрастности: семплы разных классов дистанцируются в исходном тексте. Пространство признаков строилось автоматически по статистике встречаемости термов и расширялось за счет конструирования дополнительных признаков — выделенных в тексте сущностей ФИО, чисел, цитат и аббревиатур.
Проведена серия экспериментов на архивах научных журналов «Правоприменение» (273 статьи) и «Журнал инфектологии» (684 статьи). Классификация осуществлялась моделями Nearest Neighbours, RBF SVM, Random Forest, Multilayer Perceptron, с подбором оптимальных гиперпараметров для каждого классификатора.
Эксперименты подтвердили выдвинутую гипотезу. Наиболее высокую точность показал нейросетевой классификатор (95%), уступающий по скорости линейному, точность которого при контрастном семплировании также оказалась высока (91–94 %). Полученные значения превосходят результаты, опубликованные для задач NER и анализа тональности на данных со сравнимыми характеристиками. Высокая вычислительная эффективность предложенного метода позволяет встраивать его в прикладные системы и обрабатывать документы в онлайн-режиме.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"