Все выпуски

[ Switch to English ]

Интерпретация результатов радиоволнового просвечивания методами машинного обучения

В настоящий момент значительно возросла глубина работ по разведке кимберлитовых тел и рудных месторождений. Традиционные геологические методы поиска оказались неэффективными. Практически единственным прямым методом поиска является бурение системы скважин до глубин, которые обеспечивают доступ к вмещающим породам. Из-за высокой стоимости бурения возросла роль межскважинных методов. Они позволяют увеличить среднее расстояние между скважинами без существенного снижения вероятности пропуска кимберлитового или рудного тела. Метод радиоволнового просвечивания особенно эффективен при поиске объектов, отличающихся высокой контрастностью электропроводящих свойств. Физическую основу метода составляет зависимость распространения электромагнитной волны от проводящих свойств среды распространения. Источником и приемником электромагнитного излучения является электрический диполь. При измерениях они размещаются в соседних скважинах. Расстояние между источником и приемником известно. Поэтому, измерив величину уменьшения амплитуды электромагнитной волны при ее распространении между скважинами, можно оценить коэффициент поглощения среды. Породе с низким электрическим сопротивлением соответствует высокое поглощение радиоволн. Поэтому данные межскважинных измерений позволяют оценить эффективное электрическое сопротивление породы. Обычно источник и приемник синхронно погружаются в соседние скважины. Измерение величины амплитуды электрического поля в приемнике позволяет оценить среднее значение коэффициента затухания на линии, соединяющей источник и приемник. Измерения проводятся во время остановок, приблизительно каждые 5 м. Расстояние между остановками значительно меньше расстояния между соседними скважинами. Это приводит к значительной пространственной анизотропии в распределении данных. При проведении разведочного бурения скважины покрывают большую площадь. Наша цель состоит в построении трехмерной модели распределения электрических свойств межскважинного пространства на всем участке по результатом совокупности измерений. Анизотропия пространственного распределения измерений препятствует использованию стандартных методов геостатистики. Для построения трехмерной модели коэффициента затухания мы использовали один из методов теории машинного обучения — метод ближайших соседей. В этом методе коэффициент поглощения в заданной точке определяется его значениями для $k$ ближайших измерений. Число $k$ определяется из дополнительных соображений. Влияния анизотропии пространственного распределения измерений удается избежать, изменив пространственный масштаб в горизонтальном направлении. Масштабный множитель $\lambda$ является еще одним внешним параметром задачи. Для выбора значений параметров $k$ и $\lambda$ мы использовали коэффициент детерминации. Для демонстрации процедуры построения трехмерного образа коэффициента поглощения мы воспользовались данными межскважинного радиоволнового просвечивания, полученные на одном из участков в Якутии.

Ключевые слова: межскважинное зондирование, радиоволновое просвечивание, машинное обучение, kNN-алгоритм
Цитата: Алёшин И.М., Малыгин И.В. Интерпретация результатов радиоволнового просвечивания методами машинного обучения // Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 675-684
Citation in English: Aleshin I.M., Malygin I.V. Machine learning interpretation of inter-well radiowave survey data // Computer Research and Modeling, 2019, vol. 11, no. 4, pp. 675-684
DOI: 10.20537/2076-7633-2019-11-4-675-684
Creative Commons License Статья доступна по лицензии Creative Commons Attribution-NoDerivs 3.0 Unported License.
Просмотров за год: 3.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.