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This paper is devoted to the problem of edge criticality identification and ranking in complex
networks, which is a part of a modern research direction in the novel network science. The diffusion
importance belongs to the set of acknowledged methods that help to identify the significant connections
in the graph that are critical to retaining structural integrity. In the present work, we develop the
Iterative Diffusion Importance algorithm that is based on the re-estimation of critical topological
features at each step of the graph deconstruction. The Iterative Diffusion Importance has been
compared with methods such as diffusion importance and degree product, which are two very
well-known benchmark algorithms. As for benchmark networks, we tested the Iterative Diffusion
Importance on three standard networks, such as Zachary’s Karate Club, the American Football
Network, and the Dolphins Network, which are often used for algorithm efficiency evaluation and are
different in size and density. Also, we proposed a new benchmark network representing the airplane
communication between Japan and the US. The numerical experiment on finding the ranking of critical
edges and the following network decomposition demonstrated that the proposed Iterative Diffusion
Importance exceeds the conventional diffusion importance by the efficiency for 2-35 % depending
on the network complexity, the number of nodes, and the number of edges. The only drawback of
the Iterative Diffusion Importance is an increase in computation complexity and hencely in the run-
time, but this drawback can be easily compensated for by the preliminary planning of the network
deconstruction or protection and by reducing the re-evaluation frequency of the iterative process.
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1. Introduction

The progression and growth of intricate networks have markedly enhanced our comprehension
of diverse natural and societal systems. Whether it be scrutinizing biological networks [Newman,
2002] essential for life processes in organisms, such problems as PageRank in application to search
engines [Skachkov et al., 2023], mathematical modeling of group interaction [Vasilyeva et al., 2023],
social networks [Pei et al., 2015] influentially shaping human interactions and idea diffusion, or
technological networks [Wan et al., 2018] fundamental to pivotal infrastructures and information
flow, the field of network science provides a crucial lens for grasping the dynamics governing these
complex systems. With our dependence on these networks escalating to sustain societal, economic, or
environmental functionalities [Newman, 2003], the significance of comprehending their functionality,
resilience, and vulnerability [Xia, Hill, 2008] to internal or external disruptions is progressively
emphasized.

Network science encompasses a broad spectrum of theories, models, and analytical methods
aimed at revealing the structure and dynamics of networks. Analyzing networks from various
angles, the significance and strength of their connections or their response to changes [Albert,
Barabasi, 2002] — researchers can uncover patterns and principles that apply across different
systems. This comprehensive approach is essential for devising strategies to enhance the efficiency
of networks [Louzada et al., 2015], which ultimately creates more robust and adaptive systems that can
withstand and recover from contemporary challenges and crises. Various metrics have been explored
in the network science literature [Qian et al., 2017] to assess the significance of links within networks,
including edge betweenness centrality [Girvan, Newman, 2002], degree product [Wang, Chen, 2008],
diffusion importance [Liu et al., 2015], bridgeness [Cheng et al., 2010; Wu et al., 2018], topological
overlap [Onnela et al., 2007], and k-path centrality [De Meo et al., 2012]. These methods provide
a different perspective on the role of the edges, from facilitating information flow to influencing
community structures. Our study acknowledges the value of these metrics and concentrates on diffusion
importance, a method that emphasizes network topology. By focusing on this aspect, we aim to uncover
the mechanisms that enhance network stability and adaptability, offering new insights for managing
these complex systems to maximize their resilience.

The structure of these networks shapes our interactions and transactions, which are
interconnected to the “edges” whose significance extends beyond just the simple connection. Within
this framework, Diffusion Importance serves as a pivotal network metric that is used to assess
the importance of individual edges or links in easing the spread of information or other kinds of
transmissible elements throughout the network. This metric is fundamental for comprehending how
different sectors of a network engage and communicate effectively. This helps analysts to evaluate
and identify which edges are essential for maintaining overall network connectivity and functionality.
These critical links ensure rapid propagation of information or influence to distant nodes. Consequently,
scrutinizing diffusion importance aids in optimizing network architectures to enhance resilience, address
vulnerabilities, and mitigate disruptions caused by natural phenomena or human activities. This metric
holds particular significance across various domains, including social network analysis, infrastructure
management, and cybersecurity.

The study aims to identify the critical structural elements that enhance network stability. By
investigating the impact of Diffusion Importance on network cohesion and flexibility, we can gain
deeper insights into how these systems adapt and evolve under changing conditions. In the present
work, we propose a new method that is named “Iterative Diffusion Importance”. This method is inspired
by advanced methodologies like the Deep Link Entropy [Ozaydin, Ozaydin, 2021] and Improved Link
Entropy [Lubashevskiy et al., 2023], which iteratively re-evaluate the metrics after each edge removal.
The resulting edge criticality ranking is analyzed and compared with conventional Diffusion Importance
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using the conventional metrics of the dynamic of the largest connected component ratio [Qian et al.,
2017], which has been later reformulated and reduced to the single value estimator [Lubashevskiy,
Lubashevsky, 2023].

This paper is organized as follows: Introduction, Algorithm Efficiency Measure, Algorithms,
Data and Numerical Simulations, Discussion and Conclusion.

2. Algorithm efficiency measure

In order to compare the efficiency of algorithms for network decomposition, we introduce
a single value metric enabling us to determine which principle is better and to what extent. In general,
most of the algorithms of network decomposition via removing the most significant edges may be
categorized as the local-type algorithms. The outcome of each of those algorithms is the sequence of
edges sorted according to their significance, and by removing those edges one-by-one, the network
connectivity must gradually drop, resulting in the emergence of mutually disconnected components,
and ending with all the nodes being disconnected from each other.

The standard approach to assess the efficiency of these algorithms is the dynamics of the size R,
of the largest connected component vs the relative amount of removed edges p [Yu et al., 2018; Qian et
al., 2017; Ozaydin, Ozaydin, 2021]. The size of connected components may be normalized to the total
number of nodes to bring all the network decompositions to the same standard, or it can be presented
in absolute values, when the comparison of networks of different sizes is not part of a numerical
simulation. In the present work, we are going to use normalized values, so before any portion of
edges is removed (p = 0) the value R,. = 1 (the initial network is assumed to be a connected graph),
correspondingly, at the end of the edge removing sequence, as p — 1 (100 % of edges are removed),
the value R, — 0.

The popularity of the R,.(p)-criterion is explained by its simplicity and perspicuity — the
faster the drop of R,. as p increases, the higher the significance of the removed edges. When
for two algorithms A, and A, applied to decomposing the same network, the corresponding
dependencies R gc:l(p) and Rgc:Z(p) are such that, e.g., Rgal(p) < Rgc:Z(p) for any p > 0, the
R, (p)-criterion enables one to order the two algorithms unambiguously according to their efficiency,
namely, A, > A,. However, when the drop of R,.(p) for one algorithm temporally outpaces another
one, €.g., Rgc:l(p) < Rgczz(p) for p < p, and Rgczl(p) > Rgczz(p) for p > p,, a more sophisticated
efficiency criterion is required.

In the present work we use an integral criterion based on the R, .(p)-dependence [Lubashevskiy,
Lubashevsky, 2023]. Namely, treating the Rgczz(p)-dependence as a continuous function of p, we

introduce the integral
1

Srsc= [ Reord. (1)

0

specifying the area under the curve R,.(p) for p € (0, 1). This area is used to measure the efficiency
of network decomposition. Put differently, the smaller the value S ,,., the more efficient the network
decomposition.

It is worth noting that, first, a similar integral criterion is used to quantify recovery processes of
large-scale disasters within the theory of resilience [Lubashevskiy, 2022]. Second, as it must, the given
integral criterion leads to the same conclusion about the superiority of one of two algorithms A and A,
specifying the edge significance in the former case noted above. However, in the latter case, when two
curves R, ., (p) and R,.,(p) outpace each other at different stages of the graph decomposition, it also
enables one to compare the related algorithms.
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3. Algorithms

Diffusion importance

Diffusion importance pertains to a metric within networks used for evaluating the significance of
individual edges or links in facilitating the transmission of information, influence, or other transmissible
entities across the network. This concept is essential for understanding how effectively different parts
of a network communicate and interact. Assessing diffusion importance enables researchers to pinpoint
which edges are pivotal in maintaining overall network connectivity and functionality. These critical
links ensure that information or influence can swiftly traverse the network and reach distant nodes.
Consequently, analyzing diffusion importance aids in optimizing network designs to bolster resilience,
manage vulnerabilities, and enhance robustness against disruptions, whether natural or human-induced.
Such insights are particularly valuable in diverse applications ranging from social network analysis to
infrastructure management and cybersecurity.

The diffusion importance has often been used as a main or a benchmark algorithm in various
papers [Qian et al., 2017]. The diffusion importance of an edge takes the disease spread process into
consideration. For an edge e,,, when disease spreads along it, there are two possible directions. In one
direction, the disease originates from node x and spreads along e,, to node y, and then spreads to the
other parts of the network through node y. So does the spread mechanism in the other direction. In that
sense, the diffusion importance of edge e,, is defined as

nx—)y + ny—)x

DI = ,
2

2

where n,_, is the number of links of node y connecting outside the nearest neighborhood of node x.
The value of the index is inevitable to be misled by the degree of the node somehow: an edge with one
high-degree node and one low-degree node may have a higher value of edge significance than its real

effect when the edge is in the periphery of the network.
Degree product

Degree product is defined as one of the most used benchmark algorithms [Duan et al., 2016;
Qian et al., 2017] due to its clarity and relative efficiency:

DP =k, -k, 3)

where k, and k, are the degree of nodes x and y. The extended form of the DP can be expressed by
the product of nodes’ degrees in the power of 6, (kxky)g, where 6 is a tunable positive parameter. In the
present work, we are focused on the ranking of edges according to their criticality, so we set the 6 = 1.
The computation of the index only needs the degree of each node, which is quite easy to get.

Iterative diffusion importance

Recent works in the topic of edge criticality assessment for complex networks [Ozaydin,
Ozaydin, 2021; Lubashevskiy, Lubashevsky, 2023; Gao et al., 2024; Ejjbiri, Lubashevsky, 2024]
underlined a blind spot long. Conventional and newly developed algorithms are based on a single
assessment principle: analyze the network, assess the edges’ features, and rank their criticality. The
problem with this approach is in the fact that after the first edge is removed, the network cannot be
considered the same; the features that have been assessed might be or even expected to be changed, so
the further usage of an edge ranking that has been obtained from the first network is rather doubtful.
In the present paper, we propose and introduce a new algorithm that is based on a conventional
metric (Diffusion Importance), but that tackles the noted blind spot. This algorithm is named Iterative
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Diffusion Importance. The gist of the algorithm is on iterative re-assessment of network features after
each edge removal, so all the changes are taken into account. The iterative step-by-step algorithm and
its pseudocode are the following:

Step 1. Load the network and create the empty list of edges, which will later be filled.

Step 2. Calculate the Diffusion Importance for each of the edges in the network.

Step 3. Rank the edges according to the descending values of their Diffusion Importance.

Step 4. Record the edge with the highest value of Diffusion Importance in the list and remove the edge
from the network.

Step 5. If the network still contains any edges — return to step 2.

Step 6. If the network doesn’t contain any edges and all the nodes are disconnected, the formed list of
edges represents the recommended sequence of edge removals to maximize the drop of R,.(p).

Algorithm 1. The pseudocode of the Iterative Diffusion Importance

Input: The undirected and unweighted graph G = (V, E).
Output: The suggested sequence of edges leading to the best deconstruction of the graph G: e, >
>e, >...>e,, where operators < and > correspond to precede and succeed.

Compose an empty list L, to which the edges will be written.

fork=1:ndo
fori_=1:ndo
Ve Vi

E«—E\ v, v; | v; € Nk
fori=1:sdo
Compute the Diffusion Importance, DI(e,) by Equation (2);
end for
end for
for epe; € E do
if DI(e;) < DI(ej) then
e, »e I
else
e <e;
end if
end for
Remove the most preceding edge e, from the set of edges E, append it to the list L,;
end for

Return: sequence of edges to be removed L,: {e,; <e, <...<e,,}

The present algorithm is based on conventional metric of Diffusion Importance the complexity
n

of which is O(n), so the complexity of Iterative Diffusion Importance is O(Z i). This complexity
1

is significantly higher than that of Diffusion Importance, so in the case of emergency need for the
criticality assessment, the original Diffusion Importance algorithm might be preferred, but considering
the fact that the network deconstruction or, vice versa, deconstruction prevention is a long-planned
process, the resulting complexity of Iterative Diffusion Importance is suitable.

4. Data and numerical simulations

To assess the efficiency of the newly proposed Iterative Diffusion Importance algorithm, we
conducted a numerical experiment of decomposing three real-world benchmark networks and a real-

2025, T. 17, Ne 5, C. 783-797




788 A. A. Jarrah, H. Ejjbiri, V. Lubashevskiy

world and currently functioning one. The results obtained with Iterative Diffusion Importance have
been compared with the results obtained by Diffusion Importance and Degree Product. The choice
of the networks is motivated by its variety in sizes (number of nodes and edges), to ensure that the
comparison of results is fair. The choice of benchmark algorithms is motivated by two factors: both
algorithms are often used as benchmarks in various studies, and the new Iterative Diffusion Importance
algorithm must provide a better result than the original Diffusion Importance to justify its significance.

Zachary’s club network

The Zachary’s karate club is one of the most well-known benchmark networks [Zachary et al.,
1977], which is often used as a benchmark for various analyses. It consists of 78 edges and 34 nodes,
usually considered to have two communities, and represents a small-ized network, the circular layout
of which is drawn (see Fig. 1).

Figure 1. The circular layout of the Zachary’s Karate Club network [Zachary et al., 1977]

Numerical simulation of the graph decomposition using all three methods is illustrated in
Fig. 2. The figure depicts how the size R,. of the largest connected component (normalized to the
initial number of nodes) decreases with an increment of a fraction of removed edges sorted by the
decrease of its relative significance (p). Three lines correspond to the decrease in size of R, when
the decomposition is governed by Diffusion Importance (pink line), Degree Product (blue line), and
Iterative Diffusion Importance (dashed green line) algorithms. As is seen, for the Zachary’s Karate
Club network, the Iterative Diffusion Importance shows significantly better performance than the
conventional Diffusion Importance or Degree Product.

Dolphins network

The Dolphins network [Lusseau et al., 2003] is an undirected social network of frequent
associations between 62 dolphins in a community living off Doubtful Sound, New Zealand. It has
often been used as a benchmark for various studies, consists of 62 nodes, 160 links, and is usually
considered to have six communities, which makes it a representative of a medium-sized network. The
circular layout of Dolphins’ network is shown in Fig. 3.

Numerical simulation of the graph decomposition using all three methods is illustrated in
Fig. 4. The figure depicts how the size R, of the largest connected component (normalized to the
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Figure 2. The graph represents decomposition of Zachary’s Karate Club network [Zachary et al., 1977] within the
Diffusion Importance (pink line), Degree Product (blue line), and Iterative Diffusion Importance (dashed green
line). The lines represent the corresponding fraction of nodes R, belonging to the largest connected component
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Figure 3. The circular layout of the Dolphins Network [Lusseau et al., 2003]
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Figure 4. The graph represents decomposition of the Dolphins network [Lusseau et al., 2003] within the Diffusion
Importance (pink line), Degree Product (blue line) and Iterative Diffusion Importance (dashed green line). The
lines represent the corresponding fraction of nodes R, belonging to the largest connected component vs the
relative amount of removed nodes p

initial number of nodes) decreases with an increment of a fraction of removed edges sorted by
the decrease in its relative significance (p). Three lines correspond to the decrease in size of R,
when the decomposition is governed by Diffusion Importance (pink line), Degree Product (blue
line), and Iterative Diffusion Importance (dashed green line) algorithms. As can be seen, for the
Dolphins network, the Iterative Diffusion Importance shows a significantly better performance than
the conventional Diffusion Importance or Degree Product.

American college football network

The American College Football network [Girvan, Newman, 2002] is the network of American
football games between Division IA colleges during the regular season in the fall of 2000. The football
network can be regarded as a representative of big networks: it consists of 115 nodes and 613 edges.
The circular layout of the American College Football network is represented in Fig. 5.

Numerical simulation of the graph decomposition using all three methods is illustrated in
Fig. 6. The figure depicts how the size R,. of the largest connected component (normalized to the
initial number of nodes) decreases with an increment of a fraction of removed edges sorted by the
decrease in its relative significance (p). Three lines correspond to the decrease in size of R,. when
the decomposition is governed by Diffusion Importance (pink line), Degree Product (blue line), and
Iterative Diffusion Importance (dashed green line) algorithms. As can be seen, for the American College
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Figure 5. The circular layout of the American College Football Network [Girvan, Newman, 2002]
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Figure 6. The graph represents decomposition of the American College Football Network [Girvan, Newman,
2002] within the Diffusion Importance (pink line), Degree Product (blue line) and Iterative Diffusion Importance

(dashed green line). The lines represent the corresponding fraction of nodes R, belonging to the largest connected
component vs the relative amount of removed nodes p
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Football network, the Iterative Diffusion Importance shows a significantly better performance than the
conventional Diffusion Importance or Degree Product.

US - Japan post-COVID airplane communication network

The fourth numerical experiment has been conducted on a current real-life network of airplane
communication between the US and Japan. The COVID period demonstrated how important and at the
same time vulnerable the international logistics and communication are, so even after the termination of
transportation restrictions, we remain attentive to critical elements of the existing routes. Understanding
of critical edges enables us to point out the attention on the individual connection between and within
countries, the absence or temporal suspension of which could collapse the whole trade and exchange of
goods between countries or regions. The following graph has been collected by the analysis of airplane
communication in key airports of the US and Japan from April to May 2024. The graph consists
of 36 nodes, 56 edges, and can be considered as a benchmark network alternative to Zachary’s karate
club. The adjacency list is presented in Table 1, and the match between indexes and airports is shown
in Table 2. The circular layout of the given network is represented by Fig. 7

Table 1. Table represents the adjacency list for the analyzed graph

S Target S Target
1 |6,18,34 18 | 20, 21, 22, 27, 30
2 | 18,33 20 | 33,34
3|34 21 | 34

4 16 22 | 34

51 19,33,34 23 | 34

6 | 7,11,13,14,20,36 || 24 | 33

7 |34 25 | 33

8 | 33,34 26 | 33,34

9 | 34 27 | 34

10 | 33 28 | 34

12 | 13,14 29 | 34

13 | 18,34 30 | 33,34

14 | 18, 33,34 31 | 34

15 | 33,34 32 | 33,34

16 | 18 33 |35

17 | 33,34

Numerical simulation of the graph decomposition using three methods is illustrated in Fig. 8. The
figure depicts how the size R, of the largest connected component (normalized to the initial number
of nodes) decreases with an increment of a fraction of removed edges sorted by the decrease in its
relative significance (p). Three lines correspond to the decrease in size of R,. when the decomposition
is governed by Diffusion Importance (pink line), Degree Product (blue line), and Iterative Diffusion
Importance (dashed green line) algorithms. As can be seen, for the US—Japan post-COVID Airplane
Communication network, the Iterative Diffusion Importance shows a significantly better performance
than the conventional Diffusion Importance or Degree Product.

5. Discussion

The deconstruction of the four analyzed networks of small, average and large size clearly
demonstrated that the proposed Iterative Diffusion Importance algorithm provides a good ranking of
edge significance for the connectivity of the network, identifying the critical link, the removal of which
collapses the network integrity. We used as benchmark methods the original Diffusion Importance [Liu
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Table 2. Match between the ID used in the table 1 and airports

ID Airport ID Airport

1 | Anchorage 19 | Komatsu Airport

2 | Atlanta 20 | Los Angeles

3 | Boston 21 | Louisville

4 | Charleston (SC) 22 | Memphis

5 | Chicago — O’Hare 23 | Miami

6 | Chubu Centrair International Airport || 24 | Minneapolis/St. Paul

7 | Cincinnati 25 | New York — JFK

8 | Dallas/Fort Worth 26 | Newark

9 | Denver 27 | Oakland

10 | Detroit 28 | Saipan

11 | Everett 29 | San Diego

12 | Fukuoka Airport 30 | San Francisco

13 | Guam 31 | San Jose (CA)

14 | Honolulu 32 | Seattle/Tacoma

15 | Houston — Intercontinental 33 | Tokyo Haneda International Airport
16 | Indianapolis 34 | Tokyo Narita International Airport
17 | Kailua — Kona 35 | Washington — Dulles

18 | Kansai International Airport 36 | Wichita — McConnell

/

Figure 7. The circular layout of the US - Japan post-COVID Airplane Communication Network

et al., 2015], Degree Product [Duan et al., 2016], which are often considered as good methods for edge
criticality assessment. In Table 3, we can see that these two methods are competitive with each other,
because for some networks the first one gives a better result, and for other networks, the second. But
the last column of Table 3 demonstrates that considering the integral area S ,,. under the curve R,.(0)
as an efficiency metric, the Iterative Diffusion Importance is superior and outperforms both benchmark
methods.

The superiority of the Iterative Diffusion Importance over the conventional Diffusion Importance
is explained by its iterative nature. After any edge removal, the network under consideration cannot
be considered as the same as the original, so the ranking of critical edges that has been obtained
by the Diffusion Importance obviously might become invalid. In the case of the Iterative Diffusion
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Figure 8. The graph represents decomposition of the US —Japan post-COVID Airplane Communication Network
within the Diffusion Importance (pink line), Degree Product (blue line) and Iterative Diffusion Importance
(dashed green line). The lines represent the corresponding fraction of nodes R, belonging to the largest connected
component vs the relative amount of removed nodes p

Table 3. The integral area S, under the curve R,.(p), see Exp. (1), for all three methods applied to decomposing
the analyzed networks. The first column provides the list of names of analyzed networks, the remaining second,
third, and fourth columns represent S ,g(,-values for the Diffusion Importance, Degree Product, and the Iterative
Diffusion Importance, respectively

Network\Method | DI DP IDI
Karate club 0.59 | 0.57 | 0.44
Dolphins 0.61 | 0.67 | 0.45
Football 0.36 | 0.81 | 0.35
Airports 0.57 | 0.50 | 0.46

Importance, after each modification of the analyzed network, we re-assess the topological metric and
re-evaluate edge criticality ranking, taking into account all the previous interventions into the network
structure. It resulted in an improvement of the efficiency from 2 % to 35 % depending on the network.

The superiority of the Iterative Diffusion Importance over the Degree Product is also
demonstrated in Table 3. It is shown that even for networks where Degree Product is provides a better
output than the conventional Diffusion Importance, the Iterative Diffusion Importance underlines the
edges to be removed in such a way that the integral drop of R,.(p) is faster and lower, which enables
us to state that the Iterative Diffusion Importance is not just a slight improvement of a conventional
Diffusion Importance, but a new and noteworthy algorithm.
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However, we want to underline the existing drawback of the Iterative Diffusion Importance.
As explained in Section 2, the computational complexity of the Iterative Diffusion Importance is
relatively higher than of the other two benchmark methods. The iterative nature of the algorithm
leads to the recalculation of topological features over and over after every edge removal. Reducing
re-evaluation frequency could decrease complexity but might also reduce the effectiveness of edge
criticality assessment. Balancing update frequency, computational complexity, and resulting efficiency
requires further investigation. So, in the case when the edge criticality ranking must be done within
a short time and the duration of the computation is a critical point by itself, the other methods
might be preferable. But in a real-life scenario, the network criticality assessment is not a question
of emergency computation, so in cases where efficiency is more important than speed, the Iterative
Diffusion Importance remains a better option.

As a more general statement resulting from the conducted numerical experiments, the iterative
re-assessment of topological features of decomposing networks is a promising principle that potentially
can be applied to various conventional methods and result in its improvement. We cannot state that
every recognized conventional method will be enhanced by the iterative approach, because regardless
of its intuitive evidence, the given hypothesis is impossible to prove. But the discovery and analysis
of an iterative approach in application to other conventional methods could re-rank the methods’
efficiencies and, in some cases, could detect dysfunctional/poorly designed methods, if the iterative
approach doesn’t improve its outcomes.

6. Conclusion

Identifying critical links in complex networks is an interesting and challenging issue in network
science. Various straightforward algorithms have been proposed to cope with it, which are based on
an initial assessment of topological features and ranking the edges according to this evaluation. In this
paper, we have offered to look at the problem from another perspective and to take into account that
any modification of the original network unavoidably leads to its topological change. We proposed to
apply the iterative re-evaluation of the network features to enhance the efficiency of edge criticality
assessment, and to be capable of finding a better sequence of edges, the removal of which leads to
faster and better network decomposition. As a topological metric, we offered to use the Diffusion
Importance, and the resulting enhanced method has been named the Iterative Diffusion Importance.
We conducted a set of numerical experiments on the analysis and deconstruction of four networks: the
real-life, currently functioning network of the post-COVID Airplane Communication between the US
and Japan, and three well-known benchmark networks: Zachary’s Karate Club, the American Football
Network, and the Dolphins Network. The result of the proposed Iterative Diffusion Importance has been
compared with results obtained by the Diffusion Importance and the Degree Product. The efficiency
of the Iterative Diffusion Importance exceeded the efficiencies of the benchmark methods by 2-35 %
depending on the complexity of the network, the number of edges, and the number of nodes.

The challenging issue of the Iterative Diffusion Importance is the increased computational
complexity, but this drawback can be compensated by the preliminary planning of the network
decomposition or protection, and by the reduction of the re-evaluation frequency of the iterative process.
Our research does not seek to diminish the effectiveness of conventional methods but rather to showcase
the additional benefits of the iterative principle for specific networks. This study enriches the existing
body of knowledge by demonstrating that methodological innovation can significantly enhance the
assessment of network robustness. The result of the present work opens the discussion on the potential
improvement of other conventional methods by applying the iterative approach of topological features
re-evaluation to them.
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