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Epidemics severely destabilize economies by reducing productivity, weakening consumer
spending, and overwhelming public infrastructure, often culminating in economic recessions. The
COVID-19 pandemic underscored the critical role of nonpharmaceutical interventions, such as
lockdowns, in containing infectious disease transmission. This study investigates how the progression
of epidemics and the implementation of lockdown policies shape the economic well-being of
populations. By integrating compartmental ordinary differential equation (ODE) models, the research
analyzes the interplay between epidemic dynamics and economic outcomes, particularly focusing on
how varying lockdown intensities influence both disease spread and population wealth. Findings reveal
that epidemics inflict significant economic damage, but timely and stringent lockdowns can mitigate
healthcare system overload by sharply reducing infection peaks and delaying the epidemic’s trajectory.
However, carefully timed lockdown relaxation is equally vital to prevent resurgent outbreaks. The study
identifies key epidemiological thresholds—such as transmission rates, recovery rates, and the basic
reproduction number (�0) — that determine the effectiveness of lockdowns. Analytically, it pinpoints
the optimal proportion of isolated individuals required to minimize total infections in scenarios where
permanent immunity is assumed. Economically, the analysis quantifies lockdown impacts by tracking
population wealth, demonstrating that economic outcomes depend heavily on the fraction of isolated
individuals who remain economically productive. Higher proportions of productive individuals during
lockdowns correlate with better wealth retention, even under fixed epidemic conditions. These insights
equip policymakers with actionable frameworks to design balanced lockdown strategies that curb
disease spread while safeguarding economic stability during future health crises.
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Эпидемии серьезно дестабилизируют экономику, снижая производительность, ослабляя по-
требительскую активность и перегружая общественные ресурсы, что часто приводит к эконо-
мическим кризисам. Пандемия COVID-19 продемонстрировала ключевую роль нематериальных
мер, таких как карантин, в сдерживании распространения инфекционных заболеваний. Данное
исследование изучает, как развитие эпидемии и введение карантинных мер влияют на эконо-
мическое благополучие населения. С помощью компартментальных моделей на основе обык-
новенных дифференциальных уравнений (ОДУ) анализируется взаимосвязь между динамикой
заболевания и экономическими последствиями, особенно фокусируясь на том, как различные
строгости карантина воздействуют как на распространение болезни, так и на благосостояние
населения. Результаты показывают, что эпидемии наносят значительный экономический ущерб,
однако своевременные и строгие карантинные меры могут снизить нагрузку на систему здра-
воохранения, резко уменьшая пик заражений и замедляя развитие эпидемии. Тем не менее,
стратегически продуманное ослабление карантина не менее важно для предотвращения по-
вторных вспышек. Исследование выявляет ключевые эпидемиологические пороговые значения,
такие как скорость передачи, уровень выздоровления и базовое репродуктивное число (�0),
которые определяют эффективность карантина. Аналитически определяется оптимальная доля
изолированных лиц, необходимая для минимизации общего числа заражений в условиях по-
стоянного иммунитета. С экономической точки зрения, влияние карантина оценивается через
динамику благосостояния населения: показано, что экономические последствия зависят от доли
изолированных, но сохраняющих экономическую активность граждан. Чем выше эта доля, тем
лучше сохраняется благосостояние даже при фиксированных эпидемиологических параметрах.
Эти выводы предоставляют властям практические рекомендации для разработки сбалансирован-
ных карантинных стратегий, способных сдерживать распространение болезней и одновременно
защищать экономическую стабильность в будущих кризисах.

Ключевые слова: эпидемия — экономическая модель, иммунитет ослабевает, карантин, бо-
гатство
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Introduction

Mathematical modeling has become an essential tool in understanding and mitigating the impact
of epidemics. In epidemiology, it has been motivated by periodically emerging large-scale epidemics
such as HIV from the 1980s to the present [Fisher-Hoch, Hutwagner, 1995; Chintu, Athale, Patil, 1995],
SARS in 2002–2003 [Anderson et al., 2004; Lam, Zhong, Tan, 2003], H5N1 influenza in 2005 [Chen
et al., 2006; Kilpatrick et al., 2006], H1N1 in 2009 [Jain et al., 2009; Girard et al., 2010], and Ebola
in 2014 [Briand et al., 2014; Kreuels et al., 2014]. The recent COVID-19 pandemic had a strong
influence on public health, economy, and many other aspects of societal life.

Numerous epidemic models have been introduced, influenced by the Spanish influenza outbreak
of 1918–1919 and the work of Kermack and McKendrick [Kapralov, Khanna, Sudan, 2014; Almeida,
Qureshi, 2019]. Among these are multi-compartment models, which serve as the foundation for
contemporary epidemiological study and offer important insights into the transmission of infectious
diseases. Nowadays, their uses include deciphering past outbreaks, forecasting the course of present and
future illnesses [Sharma, Volpert, Banerjee, 2020; Brauer et al., 2008; Keeling, Rohani, 2011], models
with a nonlinear disease transmission rate [d’Onofrio, Banerjee, Manfredi, 2020; Sun et al., 2008],
multi-patch models [Bichara, Iggidr, 2018; McCormack, Allen, 2007], multi-group models that take
into account the impact of population heterogeneity [Elbasha, Gumel, 2021], and epidemic models that
include vaccination and other control measures [Aniţa et al., 2021; Faniran et al., 2022]. To characterize
the spatial distributions of susceptible and infected individuals, spatiotemporal models take into account
the random mobility of individuals within the population [Ahmed et al., 2019; Filipe, Maule, 2004].
Monographs [Martcheva, 2015; Brauer, Castillo-Chavez, Feng, 2019] and review articles [Hethcote,
2000; Hurd, Kaneene, 1993].

Classical SIR-type models serve as the basis for the development of single and multi-strain
epidemic models. At any given time t, they usually assume that the number of recoveries and deaths
is proportionate to the number of infected persons. To overcome these constraints, delay differential
equation (DDE) models have become a potent mathematical tool. By including explicit delays, DDE
models are able to more accurately depict the temporal features of both illness progression and
transmission. They have been used to investigate various infectious diseases, such as influenza (single
and multi-strain) and COVID-19, which can be found in [Ghosh, Volpert, Banerjee, 2022b; Saade et al.,
2023; Ghosh, Volpert, Banerjee, 2022a] for single-strain epidemic models and in [Saade et al., 2024a]
for both the single-strain model and the two-strain model with the presence of cross-immunity. An
epidemiological delay model that describes the interaction between two viral strains with the absence
of cross-immunity is proposed in [Mozokhina et al., 2024]. Systems with distributed recovery and
death rates have been introduced, and it has been demonstrated that DDE models offer an appropriate
approximation of distributed recovery and death rate models [Ghosh, Volpert, Banerjee, 2022a]. A delay
epidemic model with vaccination was examined in [Saade, Aniţa, Volpert, 2023]. Dynamics of delay
epidemic models with periodic disease transmission rates for a single strain and double strains were
investigated in [Saade et al., 2024b].

Globally, the COVID-19 epidemic has drastically changed communities, causing previously
unheard-of public health issues and economic upheavals. A variety of measures were taken by
governments in an effort to control the infection spread, with partial lockdowns becoming a common
reaction. These policies, which entail selectively restricting certain activities while permitting others to
function, have proven essential in striking a balance between the two demands of economic stability
and public health [Varona, Gonzales, 2021].

Partial lockdowns have been shown to significantly affect the spread of epidemics. The authors
of [Hsiang et al., 2020] showed that these steps can successfully lower the epidemic progression,
which will slow down the pace of transmission. However, the application of these tactics is not
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without financial repercussions. According to [Loayza, 2020], countries which implemented stringent
lockdowns had notable drops in GDP, job losses and a rise in poverty levels. These results underline
the urgent need for a comprehensive understanding of how partial lockdowns impact both health
consequences and economic vitality.

An economic-demographic dynamical system was presented in [Zincenko, Petrovskii, Volpert,
2018] to illustrate scenarios which could eventually result in a significant population decline and/or
deterioration of the economy. It is also demonstrated that even in the cases when the population may
become extinct, it may still experience temporary growth.

The complex interplay between partial lockdown measures, the progression of epidemics, and
economic outcomes has been explored in prior research, such as the epidemic-economic model
proposed in [Mozokhina et al., 2024], which employed delay differential equations (DDEs) to capture
time-lagged dynamics in disease transmission. In contrast, the ordinary differential equation (ODE)
framework introduced in this study replaces these temporal delays with epidemiological transition rates
to model shifts between the model compartments. By adopting this approach, the proposed model
explicitly links public health outcomes to economic performance, focusing on short-term impacts
such as immediate changes in infection rates, workforce availability, and economic productivity. This
methodological shift simplifies the analysis of how real-time policy interventions — like lockdown
intensity and duration — simultaneously influence both disease suppression and economic stability.
The model’s compartmental ODE framework allows for a granular examination of how adjustments
in lockdown policies alter infection trajectories, healthcare burdens, and economic output over weeks
to months. Ultimately, this work aims to generate actionable insights for policymakers, emphasizing
strategies that balance effective disease containment with measures to mitigate economic downturns.
By quantifying trade-offs between public health interventions and economic resilience, the study seeks
to inform evidence-based policies that are not only effective in curbing epidemic spread but also
economically sustainable, ensuring that societies can recover more robustly from future health crises.

This study begins by introducing an integrated epidemic-economic model, followed by a rigorous
demonstration of the existence, uniqueness, positiveness, and boundedness of its solutions. Subsequent
analysis identifies the system’s equilibrium states and examines their stability properties. The work then
explores how epidemic dynamics can destabilize economic systems, emphasizing the interplay between
public health crises and socioeconomic disruption. Building on this foundation, the influence of partial
lockdown measures on disease spread is investigated under the assumption of persistent immunity (i. e.,
no immunity waning). A comprehensive model incorporating both productive populations and wealth
dynamics is subsequently developed, with numerical simulations illustrating how critical parameters
shape epidemic trajectories and economic outcomes in scenarios where immunity remains permanent.
Finally, the study concludes by synthesizing key findings and outlining potential directions for future
research to refine strategies for balancing public health interventions with economic sustainability.

Integrated epidemic-economic model development and analysis

We introduce a new mathematical model that combines epidemiological dynamics and economic
balance. In this section, we fully analyze the mathematical aspects of the new model.

Model formulation

This study builds on the classical Susceptible-Infected-Recovered (S IR) model, a foundational
epidemiological framework that tracks disease spread through transitions between susceptible, infected,
and recovered populations. Besides the usual classes of susceptible individuals S (t) and infectious
individuals I(t), we also introduce two more new classes. The first one is denoted by Rn(t) and it
represents the unproductive recovered individuals, that is, the individuals who have recovered from
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the illness but are still not able to participate in their professional activity and wealth production,
maybe due to lingering symptoms. The second new class is denoted by Rp(t) and it describes the
productively recovered individuals who have completely overcome the convalescence period and are
able to return to their work. Susceptible individuals get infected when they come into contact with
infectious individuals. Hence, new infections occur due to contact between susceptible and infectious
individuals, that is βN S (t)I(t), where β is the transmission rate (the probability of infection per contact
per unit of time). Infectious individuals recover at a rate ρ, defined as the inverse of the infectious
period. The number of individuals transitioning from the class of infectious, I(t), to the unproductive
recovered class at time t is modeled by the term ρI(t). This represents the flow of people who have
recovered from the infection but are no longer economically productive (e. g., due to long-term health
consequences or workforce exclusion). Unproductive recovered individuals become productive with
a rate μ signifying the inverse of the convalescence period (the period after which a recovered person
who is not yet productive returns to produce wealth). The number of recovered individuals who have
passed the convalescence period and return to the class of productive individuals is μRn(t). These
individuals lose their immunity and return to the susceptible class at a rate γ representing waning
immunity (the inverse of the immunity duration), are denoted by γRp(t). Hence, the epidemic model is
given by the following ordinary differential equations

dS (t)
dt
= − β

N
S (t)I(t) + γRp(t),

dI(t)
dt
=
β

N
S (t)I(t) − ρI(t),

dRn(t)

dt
= ρI(t) − μRn(t),

dRp(t)

dt
= μRn(t) − γRp(t).

It is assumed here that the total size of population is constant, and satisfies

S (t) + I(t) + Rn(t) + Rp(t) = N. (1)

Since this work aims to study the influence of the epidemic on the economy, we introduce the class of
productive individuals representing the people who contribute to the wealth production, denoted by P(t).
The number of productive individuals at time t is the sum of the number of susceptible individuals at
time t and the number of productive recovered individuals who have passed the convalescence period
at time t, that is,

P(t) = S (t) + Rp(t). (2)

Hence, the rate of change of the productive class with respect to time is given by

dP(t)
dt
= − β

N
S (t)I(t) + μRn(t).

The following equation for wealth W(t) represents the economic part of our model:

dW(t)
dt

= U(t) −C(t),

where the population’s wealth production and consumption are denoted by U(t) and C(t), respectively:

U(t) = α1
P(t)

P(t) + α2

W(t)
W(t) + α3

, (3)

C(t) = α4W(t) + (α5 + α6
W(t)

N
)N. (4)
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Here, α1 characterizes the rate of wealth production for large W , while parameters α2, α3 define
the wealth production rate for small P and W . Regardless of population size, the parameter α4
is associated with the rate of amortization and the depletion of wealth. The level of individual
consumption is described by the expression α5 + α6

W
N , where the first term denotes a fundamental

level of consumption that is independent of wealth and the second term denotes consumption that is
dependent on wealth. These functions of production and consumption are inspired by the epidemic-
economic model introduced in [Mozokhina et al., 2024]. The complete system of ordinary differential
equations (ODE) for the epidemic–economic model becomes

dS (t)
dt
= − β

N
S (t)I(t) + γRp(t), (5a)

dI(t)
dt
=
β

N
S (t)I(t) − ρI(t), (5b)

dRn(t)

dt
= ρI(t) − μRn(t), (5c)

dRp(t)

dt
= μRn(t) − γRp(t), (5d)

dP(t)
dt
= − β

N
S (t)I(t) + μRn(t), (5e)

dW(t)
dt
= U(t) −C(t). (5f)

It is appropriate to assume that μ > γ. This means that the productivity rate is larger than the rate
of waning immunity. In other words, the convalescence period is shorter than the duration of natural
immunity, which is usually satisfied for respiratory viral infections. System (5) is considered with the
following initial conditions:

S (0) = N − I(0) > 0, I(0) > 0, Rn(0) = 0, Rp(0) = 0, P(0) = S (0), W(0) > 0. (6)

All model simulations were performed using MATLAB software. The numerical values of the models’
variables used in the simulations are estimated as follows. The transmission rate and recovery rate
are chosen so that the basic reproduction number (the formula of basic reproduction number will be
derived later in this paper) is equal to 3, since this value is suitable for most viral infectious diseases
such as Covid-19 and influenza [Li et al., 2020; Biggerstaff et al., 2014]. The rate of deterioration
of immunity is chosen based on the fact that the average duration of immunity against influenza is
about 6 months [Couch, Kasel, 1983]. However, there are no sources available for the values of the
economic parameters.

Figure 1 displays a direct simulation of model (5) for values of parameters that correspond
to �0 = 3. As can be observed in this figure, the endemic solution is oscillatory stable. It will be
demonstrated that the previous observation holds for any value of �0 larger than 1.

Existence, uniqueness and positivity of solution

Here, we study the existence and uniqueness for the solution of system (5), and positivity of the
solution for Eqs. (5a)–(5e).

Lemma 1. For any nonnegative initial condition (S (0), I(0), Rn(0), Rp(0), P(0), W(0)) which
satisfies condition (6), system (5) has a unique global solution. The solution of Eqs. (5a)–(5e) is positive
and bounded.

Proof. The proof of the existence and uniqueness of a local solution of system (5) follows
directly from the Cauchy – Lipschitz theorem. To prove the positivity of the solution of Eqs. (5a)–(5e),
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(a)

(b) (c)

Figure 1. Simulation of model (5) for the initial conditions N = 106, S (0) = N − 1 = P(0), I(0) = 1, Rn(0) =
= 0, Rp(0) = 0, W(0) = 4.15 · 108, the epidemic parameters β = 0.3, ρ = 1

10 , γ =
1

180 , μ =
1
7 , and economic

parameters a1 = 109, a2 = 106, a3 = 106, a4 = 0.5, a5 = 0.7, a6 = 0.7. a) epidemic progression; b) productive
individuals; c) wealth of population

we integrate Eqs. (5b), (5c), (5d) and (5a), respectively, taking into account initial values as defined in
Eq. (6). We get the following:

I(t) = I(0)e
−

t∫

0

(
ρ− βN S (η)

)
dη
> 0,

Rn(t) = Rn(0)e
−

t∫

0
μ dη
+ e
−

t∫

0
μ dη

t∫

0

ρI(η)e

t∫

0
μ dη

dη > 0,

Rp(t) = Rp(0)e
−

t∫

0
γ dη
+ e
−

t∫

0
γ dη

t∫

0

μRn(η)e

t∫

0
γ dη

dη > 0,

and

S (t) = S (0)e
−

t∫

0

β
N I(η) dη

+ e
−

t∫

0

β
N I(η) dη

t∫

0

γRp(η)e

t∫

0

β
N I(η) dη

dη > 0.

From Eq. (2), one can demonstrate that P(t) > 0. Finally, from Eq. (1) it follows that the solution of
Eqs. (5a)–(5e) is bounded. The lemma is proved. �

It remains to note that the wealth function W defined in Eq. (5f) may drop to negative values
due to epidemic, as we will see in the section “Epidemic can destabilize the economy”.
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Equilibrium solutions of the system

Disease-free equilibrium

The disease-free equilibrium is a steady-state solution where there are no infected individuals in
the population, meaning I(t) = 0. At this equilibrium, we assume that there is no ongoing transmission
of infection, and we look for equilibrium values

(
S ∗, I∗, R∗n, R∗p, P∗, W∗

)
that satisfy system (5) when

dS
dt
= 0,

dI
dt
= 0,

dRn

dt
= 0,

dRp

dt
= 0,

dP
dt
= 0,

dW
dt
= 0. (7)

Setting I(t) = 0 in Eq. (7), we get
(
S ∗, I∗, R∗n, R∗p, P∗, W∗

)
=

(
N, 0, 0, 0, N, W∗

)
. (8)

W∗ can be determined from the equation

aW∗2 + bW∗ + c = 0,

where

a = α4 + α6, b = α3(α4 + α6) + α5N − α1N

N + α2

, c = α3α5N.

It has the discriminant Δ1 =

(
α3(α4 + α6) + α5N − α1N

N+α2

)2
−4α3α5(α4+α6)N. We get the two solutions

W∗1 =
α1

N
N+α2

− α3(α4 + α6) − α5N +
√
Δ1

2(α4 + α6)
, (9)

W∗2 =
α1

N
N+α2

− α3(α4 + α6) − α5N − √
Δ1

2(α4 + α6)
. (10)

Hence, there are two free equilibria given by

E∗1 =
(
N, 0, 0, 0, N, W∗1

)
, E∗2 =

(
N, 0, 0, 0, N, W∗2

)
. (11)

Basic reproduction number

The basic reproduction number is the average number of secondary infections caused by a single
infected individual in a fully susceptible population with no prior immunity or interventions. To find
the basic reproduction number �0 for system (5), we use the next-generation matrix method. To apply
the next-generation matrix method, we focus on the infected classes and analyze the transmission and
transition terms. The infected classes here include I(t), and we will assume S ≈ N at the disease-free
equilibrium, that is, S ∗ ≈ N. We identify the new infection terms F(I) which represent the rate of new
infections entering each infected class, and the transition terms V(I) which represent the rate of transfer
out of each infected class. For Eq. (5b), we have

F(I) =
β

N
S (t)I(t),

and the transition terms V(I) include the recovery rate:

V(t) = ρI(t).
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The next-generation matrix K = FV−1 constructed from the partial derivatives of F and V with respect
to I, evaluated at the disease-free equilibrium, that is,

F =

[
∂F
∂I

]
=
β

N
S ∗ = β, V =

[
∂V
∂I

]
= ρ,

is used to compute the basic reproduction number �0. Hence, the basic reproduction number for
system (5) is given by

�0 =
β

ρ
. (12)

Endemic equilibrium

The term “endemic equilibrium” in the context of an epidemic/economic system refers to
a stable, long-term state where an infectious disease persists in a population at a constant level, and
this persistence is analyzed in conjunction with economic factors. This equilibrium arises when the
dynamics of disease transmission and recovery are balanced, and the economic impacts of the disease
are also in a steady state. To find the endemic equilibrium of system (5), we solve Eq. (7) for each
variable in terms of others to obtain

(S ∗, I∗, Rn∗, Rp∗, P∗, W∗) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
ρN
β
,

N
(
1 − ρβ

)

1 + ρμ +
ρ
γ

,
ρ

μ
I∗,
ρ

γ
I∗, S ∗ + Rp∗, W∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠. (13)

We have two possible values for W∗, obtained by solving the equation

aW2∗ + b′W∗ + c = 0, (14)

where

a = α4 + α6, b′ = α3(α4 + α6) + α5N − α1P∗
P∗ + α2

, c = α3α5N,

with the discriminant

Δ2 =

(
α3(α4 + α6) + α5N − α1P∗

P∗ + α2

)2

− 4α3α5(α4 + α6)N.

These values are

W∗1 =
α1

P∗
P∗+α2

− α3(α4 + α6) − α5N +
√
Δ2

2(α4 + α6)
, (15)

W∗2 =
α1

P∗
P∗+α2

− α3(α4 + α6) − α5N − √
Δ2

2(α4 + α6)
. (16)

Therefore, there are two endemic equilibria given by

E∗1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
ρN
β
,

N
(
1 − ρβ

)

1 + ρμ +
ρ
γ

,
ρ

μ
I∗,
ρ

γ
I∗, S ∗ + Rp∗, W∗1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠,

E∗2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
ρN
β
,

N
(
1 − ρβ

)

1 + ρμ +
ρ
γ

,
ρ

μ
I∗,
ρ

γ
I∗, S ∗ + Rp∗, W∗2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠.

When a system’s parameter reaches a critical threshold, the dynamical system undergoes a significant
change in behavior. We investigate �0 as the model’s critical threshold. Figure 2 illustrates the endemic
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equilibrium solutions (S ∗, I∗, Rn∗, Rp∗, P∗, W∗) in relation to the basic reproduction number �0,
demonstrating the stability of these equilibria when �0 > 1. Increasing �0 elevates disease severity
and reduces the number of productive individuals, as reflected by the declining stationary value W∗1
shown in Fig. 2, b, which contributes to economic decline. Conversely, the stationary value W∗2 in
Fig. 2, c, increases with �0, indicating competing dynamics in wealth accumulation.

(a)

(b) (c)

Figure 2. Forward bifurcation diagram of the endemic equilibrium of system (5) with respect to �0 for the
epidemic parameters ρ = 1

10 , γ =
1

180 , μ =
1
7 , and the economic parameters a1 = 109, a2 = 106, a3 = 106, a4 =

= 0.5, a5 = 0.7, a6 = 0.7. a) endemic equilibrium (S ∗, I∗, Rn∗, Rp∗, P∗); b) endemic equilibrium W∗1; c) endemic
equilibrium W∗2

Stability analysis

Local stability of the disease-free equilibrium

To determine local stability at the equilibrium point, we examine the eigenvalues of the system’s
Jacobian. In order to find the Jacobian matrix for this system of differential equations, let us denote the
state vector as:

x =
[
S I Rn Rp P W

]T
. (17)

Then, the system can be written as dx
dt = f (x), where f (x) is the vector of right-hand side functions:

f (x) =
[
− βN S I + γRp

β
N S I − ρI ρI − μRn μRn − γRp − βN S I + μRn U −C

]T
. (18)
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The Jacobian matrix J is defined as the matrix of partial derivatives of each component function of f
with respect to each variable in x:

J =
∂ f
∂x
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− βN I − βN S 0 γ 0 0
β
N I β

N S − ρ 0 0 0 0
0 ρ −μ 0 0 0
0 0 μ −γ 0 0
− βN I − βN S μ 0 0 0

0 0 0 0
α1α2W

(P+α2)2(W+α3)
α1α3P

(P+α2)(W+α3)2 − (α4 + α6)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

Theorem 1. The disease-free equilibrium Ẽ0 = (N, 0, 0, 0, N) corresponding to the epidemic
part of system (5) is locally asymptotically stable if �0 < 1 and unstable if �0 > 1.

Proof. The Jacobian matrix of the system at E0 is given by

J0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −β 0 γ 0 0
0 β − ρ 0 0 0 0
0 ρ −μ 0 0 0
0 0 μ −γ 0 0
0 −β μ 0 0 0

0 0 0 0
α1α2W

(P+α2)2(W+α3)

α1α3P

(P+α2)(W+α3)2 − (α4 + α6)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

Let λ be an eigenvalue of J0. The characteristic equation is obtained by solving:

det(J0 − λI6×6) = 0.

Thus, we obtain

λ2(λ − β + ρ)(λ + μ)(λ + γ)
⎛
⎜⎜⎜⎜⎝λ −

α1α3P

(P + α2)(W + α3)2
+ α4 + α6

⎞
⎟⎟⎟⎟⎠ = 0. (21)

The characteristic equation has four nonzero real solutions given by

λ1 = β − ρ, λ2 = −μ, λ3 = −γ, λ4 =
α1α3P

(P + α2)(W + α3)2
− α4 − α6. (22)

However, the characteristic equation corresponding to Ẽ0 is given by

(λ − β + ρ)(λ + μ)(λ + γ) = 0, (23)

and it has three nonzero real solutions given by λ1, λ2, λ3. Both λ2 and λ3 are negative eigenvalues.
Finally, note that λ1 is positive only if β > ρ > 0, which means that �0 > 1, and negative only
if 0 < β < ρ, which means that �0 < 1. The theorem is proved. �

Note that the positive value of λ4 determines the loss of stability of the stationary solution for
the economic part of system (5).
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Local stability of the endemic equilibrium

Theorem 2. The endemic equilibrium Ẽ∗ = (S ∗, I∗, Rn∗, Rp∗, P∗) corresponding to the epidemic
part of system (5) given in Eq. (13) is locally asymptotically stable if �0 > 1.

Proof. The Jacobian of system (5) at the endemic state E∗ is given by Eq. (19). Then, the
characteristic equation is obtained from

det(J − λI6×6) = 0,

and it can be expressed as

λ2

⎛
⎜⎜⎜⎜⎝λ −

α1α3P∗
(P∗ + α2)(W∗ + α3)2

+ α4 + α6

⎞
⎟⎟⎟⎟⎠
(
λ3 + ξ1λ

2 + ξ2λ + ξ3

)
= 0, (24)

where

ξ1 =
β(I∗ − S ∗)

N
+ γ + μ + ρ, (25)

ξ2 =
βγ(I∗ − S ∗)

N
+
βμ(I∗ − S ∗)

N
+
βρI∗

N
+ γμ + γρ + μρ, (26)

ξ3 =
βγμ(I∗ − S ∗)

N
+
βγρI∗

N
+
βμρI∗

N
+ ργμ. (27)

Let us consider the equation
λ3 + ξ1λ

2 + ξ2λ + ξ3 = 0. (28)

By the Routh –Hurwitz criterion, it follows that the endemic equilibrium (S ∗, I∗, Rn∗, Rp∗, P∗) is
locally asymptotically stable if and only if

ξ1 > 0, ξ2 > 0, ξ3 > 0,

and
ξ1ξ2 − ξ3 > 0.

Substituting Eq. (13) into Eqs. (25)–(27), we obtain

ξ1 =
β − ρ

1 + ρμ +
ρ
γ

+ γ + μ, (29)

ξ2 =
(ρ + γ + μ)(β − ρ)

1 + ρμ +
ρ
γ

+ γμ, (30)

ξ3 =
β − ρ

1 + ρμ +
ρ
γ

(γμ + γρ + μρ). (31)

Moreover, we have
ξ1ξ2 − ξ3 = C2(ρ + γ + μ) +C(γ + μ)2 + (γ + μ)γμ, (32)

where

C =
β − ρ

1 + ρμ +
ρ
γ

. (33)

If �0 > 1, that is, β > ρ, and due to the positivity of all the parameters, then ξ1, ξ2 and ξ3 are all
positive. Additionally, ξ1ξ2−ξ3 > 0. Hence, by the Routh –Hurwitz criterion, it follows that the endemic
equilibrium Ẽ∗ = (S ∗, I∗, Rn∗, Rp∗, P∗) is locally asymptotically stable. The theorem is proved. �
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It remains to note that the positive real solution of the equation

λ =
α1α3P∗

(P∗ + α2)(W∗ + α3)2
− (α4 + α6) (34)

determines the loss of stability of the endemic equilibrium W∗ for the economic part of system (5).
Complex eigenvalues can indicate oscillatory behavior in the system. This is crucial for

predicting how the disease might fluctuate over time, which can inform public health interventions
and control strategies. Let the eigenvalue of the endemic equilibrium Ẽ∗ = (S ∗, I∗, Rn∗, Rp∗, P∗)
corresponding to the epidemic part of system (5), given in Eq. (13), be a complex number λ = x + iy.
Then substituting into Eq. (28), we get the following two equations:

x3 − 3xy2 + ξ1

(
x2 − y2

)
+ ξ2x + ξ3 = 0, (35)

3x2y − y3 + 2ξ1xy + ξ2y = 0, (36)

where ξ1, ξ2 and ξ3 are defined in Eqs. (29)–(31).

Figure 3. Solutions of Eq. (35) (red curve) and Eq. (36) (blue curve) for the values of parameters β = 0.3,
ρ = 1

10 , γ =
1

180 , μ =
1
7 . The intersection of these curves gives the eigenvalue of the Jacobian at the endemic

equilibrium point (S ∗, I∗, Rn∗, Rp∗, P∗) related to the epidemiological part of system (5). All the eigenvalues
are either negative real or complex with negative real part, determining the stability of endemic equilibrium (see
Fig. 1, a, b)

Theorem 3. For any value �0 > 1, Eq. (28) does not have a purely imaginary solution for any
positive values of the parameters β, ρ, γ and μ.

Proof. Substituting x = 0 into Eq. (35), we have

y2 =
ξ3
ξ1
.

Substituting x = 0 into Eq. (36), we get

y
(
−y2 + ξ2

)
= 0.

From the previous two equations, we obtain

ξ3 = ξ1ξ2.

This equality contradicts the fact that ξ1ξ2 > ξ3 concluded from Eq. (32) for �0 > 1. The theorem is
proved. �
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The fact that the complex eigenvalues of the endemic equilibrium regarding the epidemic part of
system (5) always have a negative real part for any parameter values underscores the inherent stability
of the epidemic part of that system. This property ensures that the disease dynamics will eventually
stabilize, with any oscillations dampening over time. From a public health perspective, this stability
provides a foundation for designing long-term control strategies and predicting the long-term behavior
of infectious diseases. Figure 3 displays the eigenvalues corresponding to the endemic equilibrium
of the epidemic part of system (5) for the initial conditions and parameters mentioned in Fig. 1 and
emphasizes the stability of that equilibrium.

Using Eq. (1), the epidemiological part of system (5) can be reduced to the following system of
differential equations:

dS (t)
dt
= − β

N
S (t)I(t) + γ(N − S (t) − I(t) − Rn(t)), (37a)

dI(t)
dt
=
β

N
S (t)I(t) − ρI(t), (37b)

dRn(t)

dt
= ρI(t) − μRn(t). (37c)

(a) (b)

Figure 4. a) simulation of model (37) for the initial conditions N = 106, S (0) = N − 1, I(0) = 1, Rn(0) = 0, the
epidemic parameters β = 0.3, ρ = 1

10 , γ =
1

180 , μ =
1
7 ; b) a 3D phase portrait, which represents the solution of

system (37) for the previous values of parameters which correspond to �0 = 3

Figure 4, b shows that the disease-free equilibrium
(
S ∗, I∗, R∗n

)
=

(
106, 0, 0

)
is an unstable node,

since the trajectory moves away from it. On the other hand, the endemic equilibrium (S ∗, I∗, Rn∗) =
= (333 212, 33 856, 23 705) is a stable spiral due to the motion of the trajectory towards the endemic
equilibrium point.

The presented mathematical analysis verifies the model’s adequacy and proves its suitability for
studying the economic consequences of epidemic spread.

Modeling the socioeconomic outcome of infection spread and lockdown
introduction

In this section, we illustrate the proposed model’s applicability by studying socioeconomic
parameters during uncontrolled epidemics and introduced lockdown measures. To simplify the analysis,
we examine the special case with no immunity waning.
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Epidemic can destabilize the economy

Consider the model without immunity waning, i. e., γ = 0 which is given by the following
equations:

dS (t)
dt
= − β

N
S (t)I(t), (38a)

dI(t)
dt
=
β

N
S (t)I(t) − ρI(t), (38b)

dRn(t)
dt

= ρI(t) − μRn(t), (38c)

dRp(t)

dt
= μRn(t), (38d)

dP(t)
dt
= − β

N
S (t)I(t) + μRn(t), (38e)

dW(t)
dt

= U(t) −C(t), (38f)

with initial conditions given in Eq. (6), where U and C are defined in Eq. (3) and Eq. (4), respectively.
Note that model (38) is a special case of model (5), inheriting the same theorems, solutions, and
stability properties.

The stationary solution for wealth is determined by setting g(W) = 0, where

g(W) = a1
W

W + a2

Ps

Ps + a3

− a4W −
(
a5 + a6

W
N

)
N, (39)

where Ps is the equilibrium value of the productive population, which is independent of wealth but
depends on the number of productive recovered and susceptible individuals. Next, we have

g′(W) =
α1α2Ps

(Ps + a3)(W + a2)2
− α4 − α6 (= λ4 from Eq. (22)).

Figure 5. Evolution of wealth in numerical simulations of model (38) for initial conditions N = 106, S (0) =
= N − I(0) = P(0), I(0) = 1, Rn(0) = Rp(0) = 0, W(0) = 1.58 · 105, the rates ρ = 1

10 , μ =
1
7 , and economic

parameters a1 = 106, a2 = 104, a3 = 104, a4 = 0.3, a5 = 0.8611, a6 = 0.15. Wealth converges to a positive value
for β = 0.1 (�0 = 1) (black curve) or abruptly drops to negative values for β = 0.11 (�0 = 1.1) (cyan curve)
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When �0 < 1, the disease cannot sustain an epidemic, as the infection-free equilibrium (I = 0)
is stable. In this case, any small introduction of the disease will naturally result in its dying out over
time without leading to widespread transmission. Hence, we have Ps = N, the equation g(W) = 0,
or equivalently Eq. (14) which is a quadratic equation, can have two solutions given by Eqs. (15)
and (16), one of which is stable (the one that satisfies g′(W) < 0), and defines the population’s wealth.
Recall that the stability of the solution of wealth part is derived from the eigenvalue λ4 defined in
Eq. (22) being less than 0. In the case of infection (�0 > 1) where the endemic equilibrium is stable,
the endemic solution for the productive population Ps is also stable. If it drops to a low enough value,
then the equation g(W) = 0 or Eq. (14) does not have stationary solutions because g(W) will become
negative, and thus dW

dt < 0, which means that the wealth part will decrease to negative values (this
implies that the determinant of the quadratic equation (14) is negative). The solution of Eq. (38f) with
positive initial condition decreases and becomes negative. Negative wealth aligns with a debt-ridden
economy. Nevertheless, since the model considered is not adapted to account for negative wealth, we
ceased running further simulations at this point (Fig. 5). Interestingly, it should be noted that for weak
infection, that is, when �0 is slightly larger than 1, the level of wealth remains fairly constant over
a long period of time before experiencing a sudden decline. Therefore, epidemics can induce economic
instability, drive wealth down to negative levels, and disrupt the positive wealth equilibrium.

Influence of isolation on epidemic progression

In this section, we examine the case with permanent immunity. Isolating a portion of the
population can affect the spread of the epidemic and reduce the number of infected people. We start
our analysis of the influence of isolation and determine the optimal percentage of isolated people
considering the scenario in which immunity does not wane. Hence, we model a partial lockdown in
which a part of the population is isolated and cannot be infected. Isolation begins before the onset
of the epidemic and ends after it has passed. Introducing a lockdown before the first disease case
is detected, rather than after the epidemic has started, is a proactive strategy aimed at preventing or
significantly mitigating the spread of an infectious disease. This approach can save lives, reduce the
burden on healthcare systems, and minimize the size of the group of infected individuals. Thus, we
impose a partial lockdown at time t0 with duration T and a proportion of isolated population k ∈ (0, 1)
out of the total population N0. Our goal is to determine the optimal percentage of isolated people which
minimizes the size of infected individuals. Let us consider the following system of equations:

dS (t)
dt
= − β

N(t)
S (t)I(t), (40a)

dI(t)
dt
=
β

N(t)
S (t)I(t) − ρI(t), (40b)

dRn(t)

dt
= ρI(t) − μRn(t), (40c)

dRp(t)

dt
= μRn(t). (40d)

Equation (40d) differs from Eq. (5d) because we assume that recovered individuals obtain permanent
immunity against the disease and do not become susceptible any more. System (40) is considered with
the initial conditions

S (0) = S 0 > 0, I(0) = I0 > 0, Rn(0) = Rp(0) = 0, (41)

where S 0 + I0 = N0. At the beginning of isolation at t = t0, apart from the total population, the same
part of the susceptible population is removed, and then returns at time t1 = t0 + T , as follows:

N(t0) = (1 − k)N0, S (t0) = S (t0) − kN0, N(t1) = N0, S (t1) = S (t1) + kN0. (42)
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Analytical estimate

Next, we evaluate the value of the percentage of isolated population k which determine the
minimal total number of infected individuals. Let us set R(t) = Rn(t)+Rp(t) denoting the number of all

recovered individuals at time t, then dR(t)
dt =

dRn(t)
dt +

dRp(t)
dt which gives

dR(t)
dt
= ρI(t). (43)

Dividing Eq. (40a) by Eq. (43), and integrating from 0 to ∞, taking into account that S 0 = (1 − k)N0,

and S f is the final number of susceptible individuals, we obtain the following equation in φ =
S f

(1−k)N0
:

lnφ = �0(φ − 1), (44)

where �0 =
β
ρ is the basic reproduction number. Equation (44) has a solution φ ∈ (0, 1) if �0 > 1.

When the lockdown is finished and isolated people return, the total number of susceptible individuals
becomes S f + kN0 and the new value of the basic reproduction number is

�′0 =
β

ρ

S f + kN0

N0

= �0((1 − k)φ + k).

We can find k from the condition �′0 = 1, which implies that the epidemic does not restart after the
end of isolation:

k =

1
�0
− φ

1 − φ . (45)

The total number of infected individuals is given by the following formula:

Itotal = (1 − k)N0 − S f = (1 − k)N0(1 − φ). (46)

For example, if �0 = 3, then from Eq. (44) we obtain φ ≈ 0.06 and from Eq. (45) and Eq. (46)

we have k ≈ 29 % and
Itotal
N ≈ 67 %, respectively; on the other hand, without lockdown (k = 0) we

obtain
Itotal
N ≈ 94 %. Thus, isolation reduces the proportion of infected individuals by 27 %.

We note that for �0 sufficiently large, we can use the approximation φ � 1, and k ≈ 1
�0

. This

simple formula gives a good approximation already for �0 = 3.

Numerical simulations

Now, we numerically investigate the influence of isolation on the progression of the epidemic.
Figure 6 displays examples of numerical simulations of system (40). The typical dynamics of epidemic
breakout are seen in the situation without isolated population (panel a), where the number of susceptible
individuals is declining and the number of recovered individuals is rising. We then consider the scenario
where a portion of the population is isolated during the outbreak and then re-emerges once it is over. If
the percentage of isolated people does not surpass some critical value, then the new basic reproduction
number �′0 is less than 1 and the epidemic does not recur (panel b). However, if the percentage of
isolated people is high enough and �′0 > 1, then a second outbreak occurs (panel c) and the total
number of infected people grows up. In the direct numerical solutions of Eq. (40) and Eq. (41), we
calculated the total number of infected individuals. Figure 7 indicates that, in relation to the percentage
of the isolated population, the total number of infected individuals in the model without immunity
waning has a local minimum. For example, if ρ = 1

10 , then �0 = 3, and the minimum optimal solution

is given by the pair
(
k,

Itotal
N0

)
≈ (29 %, 67 %) (see Fig. 6, b), which corresponds to the analytical values

obtained previously. However, if the percentage of isolated people is 60 % (as in Fig. 6, c), then
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(a) (b)

(c)

Figure 6. Susceptible, infected and recovered populations in numerical simulations of system (40) for initial
conditions N0 = 106, S (0) = N0 − 1, I(0) = 1, Rn(0) = Rp(0) = 0 and parameters β = 0.3, ρ = 1

10 . a) without
isolation; b) a part of the population is isolated before epidemic outbreak and returns afterward (t0 = 0, T = 180,
k ≈ 29 %); c) t0 = 0, T = 180, k = 60 %

Figure 7. Dependence of the total number of infected individuals Itotal on the percentage of isolated population
in model (40) without immunity waning. The parameter values are N0 = 106, β = 0.3, t0 = 0, T = 180, I(0) = 1

the initial outbreak is minor, but there is a second outbreak after the end of isolation, which leads to

a higher total number of infected individuals
(

Itotal
N0
≈ 85 %

)
. The pair

(
k,

Itotal
N0

)
≈ (21 %, 79 %) represents

the minimum optimal solution for ρ = 1
15 , or �0 = 4.5. Sufficiently similar results are obtained using

the analytical approximations k ≈ 1
�0
≈ 22.2 %,

Itotal
N0
≈ 77.8 %.
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The influence of isolation on economy

We proceed to the analysis of the model with permanent immunity in addition to productive
individuals and wealth, where we study the influence of isolation on the productive population and
wealth. We obtain the following system of equations:

dS (t)
dt
= − β

N(t)
S (t)I(t), (47a)

dI(t)
dt
=
β

N(t)
S (t)I(t) − ρI(t), (47b)

dRn(t)

dt
= ρI(t) − μRn(t), (47c)

dRp(t)

dt
= μRn(t), (47d)

dP(t)
dt
= − β

N(t)
S (t)I(t) + μRn(t), (47e)

dW(t)
dt
= U(t) −C(t), (47f)

where U and C are defined as

U(t) = α1
P(t)

P(t) + α2

W(t)
W(t) + α3

, (48)

C(t) = α4W(t) + (α5 + α6
W(t)
N0

)N0. (49)

The model is considered with initial conditions

S (0) = N0 − I(0) > 0, I(0) > 0, Rn(0) = 0, Rp(0) = 0, P(0) = S (0), W(0) > 0. (50)

In the case of lockdown, this model is completed by the following conditions:

N(t0) = (1 − k)N0, S (t0) = S (t0) − kN0, P(t0) = P(t0) − kαN0,

N(t1) = N0, S (t1) = S (t1) + kN0, P(t1) = P(t1) + kαN0, (51)

which, respectively, determine the beginning of lockdown, its duration, and the proportion of isolated
population where, k ∈ (0, 1) and α ∈ [0, 1]. Since isolated people can have different levels of
productivity, we introduce the coefficient α for the proportion of isolated individuals who become
unproductive during lockdown. Figure 8 displays the amount of wealth for different percentages of
isolated people during lockdown, namely, 40 %, 65 % and 90 % also with different levels of productivity
among these isolated people, namely, 0 %, 50 % and 100 %. In all of these plots, the amount of wealth
shows a depression during the isolation period in proportion to the level of productivity among isolated
people. Next, due to the secondary outbreak which occurs when the isolated people return to the
susceptible compartment with a basic reproduction number larger than 1 after the lockdown, another
dropping in the wealth amount happens in proportion to the percentage of isolated people before
it stabilizes to the endemic equilibrium regardless of the proportion of isolated people. Figure 9
(magenta curve) shows that the amount of wealth during isolation is a decreasing function of the
percentage of unproductive isolated individuals. However, if all the isolated people are productive,
then the population wealth increases as the percentage of isolated people grows larger (cyan curve).
If half of the isolated people are productive, then the amount of wealth is again a decreasing function
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(a) (b)

(c)

Figure 8. Simulations of model (47)–(51) with permanent immunity for the following values of parameters N0 =

= 106, ρ = 1
10 , μ =

1
7 , t0 = 0, T = 180, I(0) = 1. a) k = 40 %; b) k = 65 %; c) k = 90 %

Figure 9. Dependence of the wealth amount during isolation ρ
T∫

0

W(ζ)dζ on the percentage of isolated population

in model (47)–(51) with permanent immunity. The parameter values are N0 = 106, β = 0.3, ρ = 1
10 , μ =

1
7 , t0 = 0,

T = 180, I(0) = 1

with respect to the percentage of isolated individuals (blue curve), but this decrease is weaker than
in the case where all isolated people are unproductive. With 90 % of individuals among the isolated
population being productive (α = 10 %), the wealth remains approximately constant (green curve).
Figure 10 tells us that if we increase the disease transmission rate and decrease the recovery rate,
and consequently if we increase the basic reproduction number �0, then the amount of wealth during
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(a) (b)

Figure 10. a) Dependence of the wealth amount during isolation ρ
T∫

0

W(ζ) dζ on the disease transmission rate in

model (47)–(51) with permanent immunity. The parameter values are N0 = 106, ρ = 1
10 , μ =

1
7 , t0 = 0, T = 180,

k = 29 %, I(0) = 1. b) Dependence of the wealth amount during isolation ρ
T∫

0

W(ζ) dζ on the recovery rate in

model (47)–(51) with permanent immunity. The parameter values are N0 = 106, β = 0.3, μ = 1
7 , t0 = 0, T = 180,

k = 29 %, I(0) = 1

isolation becomes smaller. Furthermore, as the percentage of productive individuals among the isolated
people increases, the amount of wealth increases as well.

Discussion

In this work, an epidemiological-economic model that incorporates a system of ordinary
differential equations featuring three rates is proposed. These rates correspond to recovery, immunity
waning and productivity. Existence and uniqueness of its solution are proved along with the positiveness
and boundedness regarding the solution corresponding to the epidemic parts of the ODE model, which
is demonstrated as well. One of the goals of this work is to make a brief comparison with the insights
obtained in the previous study [Mozokhina et al., 2024].

Stability analysis for both disease-free and endemic equilibria are investigated. In contrast to
the corresponding model with time delays considered in [Mozokhina et al., 2024] where a positive
stationary solution regarding the epidemic part of the system appears for a basic reproduction number
larger than 1, then loses its stability and leads to periodic oscillations if the basic reproduction number
exceeds some critical value, in the current work, the solution related to the epidemic parts of the
proposed ODE model which refers to solution without infection in the population, loses its stability
if�0 > 1 but then oscillatory stabilizes to constant value reflecting the stability of endemic equilibrium
point. The positive value of the eigenvalue λ4 defined in (22) determines the loss of stability of both
the disease-free and endemic equilibria of the economic part of system (5).

Isolation alters the wealth of the population, lessens the intensity of the disease outbreak, and
has an impact on the epidemic and economic dynamics.

Determining the optimal percentage of isolated individuals is one of the work’s primary
outcomes. This best optimal choice is the maximum percentage of isolated people for whom the
epidemic does not recur after the isolation ends, in the case of a single outbreak with no waning
immunity. It is possible to calculate this optimal proportion analytically. For instance, the optimal
proportion of isolated people is 29 % of the total population, which reduces the overall number of
infected individuals by roughly 30 % if the basic reproduction number is 3. The analytical process of
determining the optimal percentage of isolated people differs from that used in [Mozokhina et al., 2024]
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because the formula of the basic reproduction number regarding each model is different. However, the
numerical result of the ideal proportion of isolated individuals obtained in the present work is relatively
close to that obtained in the previous work using the DDE model. Isolation can thereby lessen the strain
on the economy and public health system. After the lockdown is over, a secondary epidemic outbreak
happens if the percentage of isolated individuals is higher than the optimal level. As was the case with
COVID-19 in China, this scenario can result in a significant number of infections and fatalities if it is
not previously anticipated [Wikipedia, COVID-19].

Thus, while lockdown can be helpful, its duration and the percentage of isolated people should
be adapted to each specific epidemic, otherwise the effects on the economy and public health may not
be satisfactory.

We also study the influence of epidemics on the economy in the absence and in the presence
of isolation. When recovered, individuals obtain permanent immunity against the disease. Wealth
deteriorates as a result of lower numbers of productive individuals and increasing disease severity
brought on by the increase in the basic reproduction number. Although enforcing partial lockdowns
lessens the epidemic, the impact on the economy during isolation is contingent upon the productivity
of the isolated people. Wealth increases during isolation if all isolated individuals are productive;
nevertheless, as the productivity rate among the isolated population declines, the population’s wealth
declines. If 90 % of isolated people are productive, the level of wealth remains roughly constant. This
is a crucial measure that describes how economically effective lockdowns are. This crucial number
should be determined numerically for every unique situation, as we have yet to find an analytical
formula for it.

Furthermore, this work demonstrates how epidemics can cause a sudden shift to negative wealth
values, hence eliminating a positive wealth equilibrium. This occurs as a result of the decline in
the proportion of productive people among the population. Because of the significant decline in
the productive population, many epidemics have historically had significant economic and social
repercussions [Wikipedia, Italian plague]. The effect of epidemics on the economy through the
productive population is similar, even though this work does not take epidemic-induced mortality into
account. By offering a thorough examination of the interaction between epidemiological dynamics and
economic determinants, these findings clearly correspond to the research goal stated in the introduction.
In particular, this analysis provides useful information on how policymakers might create more efficient
lockdown plans that strike a balance between the demands of public health and economic viability
during isolation. Future studies should concentrate on improving these models by adding more real-
world data and broadening the scope of the analysis to encompass the impacts of vaccination and
long-term immunity.

A pivotal outcome of this study is the construction of a mathematical model which integrates both
epidemiological parameters and economic balance, accounts for factors critical to understanding the
epidemic’s economic impact such as long-term disease consequences and heterogeneity in population
groups’ economic participation. This model can be used for simulating economic costs in epidemic
control, such as comparing different economic systems with varying parameter ratios, analyzing the
economic impact of reduced recovery time and testing the model on real-world data from various
countries.

This study has some limitations. First, ODE models do not simulate periodic outbreaks because
the endemic equilibrium corresponding to the epidemic part of system (5) is always stable for �0 > 1
in contrast to the DDE models where the endemic stationary solution related to the epidemic part is
oscillatory unstable if �0 exceeds some critical value �c > 1 (see [Saade et al., 2024a; Saade, Aniţa,
Volpert, 2023; Mozokhina et al., 2024]). As a result, one can conclude that DDE models are more
appropriate in describing epidemic progression than ODE models, which fail to capture the periodic
outbreaks which are a common phenomenon in the dynamics of several real-world diseases such as
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influenza, measles, COVID-19, dengue fever, and many others. These oscillations arise due to the
interplay between susceptible, infected, and recovered individuals, as well as factors like immunity,
transmission rates, and population behavior. However, it would be interesting to understand how to
describe them using ODE models. Furthermore, exposed parts, which can have some bearing on the
population’s economic situation, were not taken into account in this work. Moreover, in subsequent
research, the modeling methods described in this paper might be used to examine data for different
diseases in various nations using actual budget indicators. These and a few additional questions are
intriguing open-ended questions for future research.
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