
COMPUTER RESEARCH AND MODELING
2025 VOL. 17 NO. 1 P. 139–169
DOI: 10.20537/2076-7633-2025-17-1-139-169

ANALYSIS AND MODELING OF COMPLEX LIVING SYSTEMS

UDC: 519.876, 576.8, 517.9, 574.34

The impact of ecological mechanisms
on stability in an eco-epidemiological model:

Allee effect and prey refuge

T. Gabera, Widowati, R. Herdiana

Department of Mathematics, Faculty of Sciences and Mathematics, Diponegoro University,
Semarang, 50275, Indonesia

E-mail: a taleb0gaber@gmail.com

Received 10.11.2024, after completion — 21.01.2025.
Accepted for publication 27.01.2025.

Eco-epidemiological models provide insights into factors influencing disease transmission and
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impacts of prey refuge availability and an Allee effect on dynamics. Model A incorporated these
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were analyzed mathematically and via simulation. Model equilibrium states were examined locally and
globally under differing parameter combinations representative of environmental scenarios. Model A
and B demonstrated globally stable conditions within certain parameter ranges, signalling refuge
and Allee effect terms promote robustness. Moreover, model A showed a higher potential toward
extinction of the species as a result of incorporating the Allee effect. Bifurcation analyses revealed
qualitative shifts in behavior triggered by modifications like altered predation mortality. Model A
manifested a transcritical bifurcation indicating critical population thresholds. Additional bifurcation
types were noticed when refuge and Allee stabilizing impacts were absent in model B. Findings showed
disease crowding effect and that host persistence is positively associated with refuge habitat, reducing
predator – prey encounters. The Allee effect also calibrated stability via heightened sensitivity to small
groups. Simulations aligned with mathematical predictions. Model A underwent bifurcations at critical
predator death rates impacting prey outcomes. This work provides a valuable framework to minimize
transmission given resource availability or demographic alterations, generating testable hypotheses.
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1. Introduction

The dynamic interaction between predators and their prey is widely considered one of the most
prevalent natural phenomena, as this relationship has become among the most extensively studied topics
within ecology [Gaber, Herdiana, Widowati, 2024]. Prey shelters, harvesting, sickness, and the Allee
effect are hugely impactful factors that can drastically alter the behaviors of predator – prey models,
potentially producing very intriguing outcomes [Anggriani et al., 2023; Han, Dey, Banerjee, 2023;
Kumar, Mandal, 2022; Li et al., 2022a; Li et al., 2022b; Molla et al., 2022; Pal et al., 2024; Shang,
Qiao, 2024; Thirthar et al., 2022].

Studies from [Liang, Meng, 2023; Sen, Ghorai, Banerjee, 2019] demonstrated that incorporating
prey refuge highly benefits ecological stability by decreasing interactions between hunter and hunted.
There exist two standard forms of shelter: one where refuge size depends on prey numbers, with the
rest vulnerable to capture. The other involves fixed refuge quantities. A steady Lotka – Volterra system
remains unaffected by constant refuge. However, substantial refuge eliminates cycles, instead resulting
in stable balances.

Typically, mathematical designs are employed to investigate the impacts of shelter on coupled
population fluctuations, modeling predator – prey frameworks that include some manifestation of refuge
safeguarding from predation [Al-Salti et al., 2021; Liu et al., 2021; Majeed, Ghafel, 2022; Sasmal,
2018; Vinoth et al., 2021], incorporating a fixed proportion of refuge alongside a Holling type II
response function. Conversely, refuge correlating to interactions can instigate self-limitation within
Lotka – Volterra’s outcomes [Molla et al., 2022].

Additionally, the Allee effect may surface due to various natural phenomena such as lessened
vigilance, inherited tendencies, mating troubles, and nutritional deficiencies at low densities c.
[Cao, Ma, Hao, 2023] examined a changed Leslie – Gower model where prey growth aligned
with a powerful multiplicative Allee effect governed by a Beddington – DeAngelis functional form.
Numerous investigations likewise analyzed modified Leslie – Gower designs containing additive Allee
effects using Holling type II response. [Pal, Pal, Chattopadhyay, 2018; Pal et al., 2019] found
the Allee effect can heighten extinction risk. Thus, jointly exploring refuge’s and Allee effects’
impacts on predator – prey relational population behaviors may enhance comprehending conditions
prompting species endangerment. Accordingly, we propose a predator – prey model combining two
crucial components: 1) a Holling type II functional response depicting capture rates and 2) an additive
Allee effect term influencing prey propagation. Integrating these elements will illuminate how Allee
effects and refuge shape population fluctuations. Our suggested design intends offering a more inclusive
and realistic representation of actual predator – prey interactions.

Furthermore, as predators’ consuming histories affect the present birth rates, time delays
emerge. Exploration has featured prey and predator delay designs alongside Allee effects. These
lags dramatically impacted the design’s security and behaviors, regularly prompting bifurcations and
nonlinear phenomena. Accounting for such hold-ups provides a fuller characterization of real ecological
interactions that inevitably involve utilitarian histories. Integrating time delays into our proposed
predator – prey model containing Allee effects and refuge could yield supplemental comprehension
of how delays interact with and amplify system intricacy elements. This defines an encouraging path
for forthcoming research generating a highly nuanced and emblematic theoretical structure, [Anacleto,
Vidal, 2020] supplied some insights on the existence of security commuting theoretically and probing
bifurcation bearing concerning time delay. The nonlinear incidence rate was advanced by Gumel and
Moghadas and adapted into our previous research [Gaber, Herdiana, Widowati, 2024] and used by
numerous additional investigators [Kamrujjaman, Shahriar Mahmud, Islam, 2021; Lv, Ke, Li, 2020;
Nabti, Ghanbari, 2021; Rohith, Devika, 2020], it is considered more precise than the straightforward
mass action legislation when it comes to disease dispersing in parallel in types as it considers the
crowding influence of the infected persons.
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Our previous research [Gaber, Herdiana, Widowati, 2024] has focused on the dynamics of
the predator – prey model with a nonlinear incidence rate where we noticed the occurrence of many
transcritical bifurcations as well as a Hopf bifurcation.

In this paper, we go forward as we formulate a new eco-epidemiological model of a prey –
predator with an infection in the prey population following a nonlinear incidence rate just as in [Gaber,
Herdiana, Widowati, 2024] adding the Allee effect using a different term than the one used in [Molla et
al., 2022] and a prey refuge which is only proportional to the prey as hideouts like tree limbs, caverns,
and camouflage. Our proposed model adheres to Holling type II responsiveness in vulnerable-prey and
predator interactions and fundamental mass action legislation in contaminated prey – predator interplay,
designed to better depict infection weakening exposed prey incapable of sheltering or fleeing. We cover
crowded infected-individual impacts assuming disease transmission amongst vulnerable and infected
prey resulting from contact as stated by the nonlinear incidence rate.

To illustrate the applicability of our model, we draw on the real-world example of Toxoplasma
gondii infections in rodent populations and their interactions with feline predators [Berdoy, Webster,
Macdonald, 2000]. Infected rodents exhibit altered behaviors, such as reduced aversion to predators,
which increases their susceptibility to predation. This behavioral shift enhances parasite transmission
to definitive hosts, such as cats [Flegr, 2007]. The dynamics observed in this system align with the
theoretical constructs of our model, particularly the differential predation rates and the influence of
disease on prey vulnerability. Including such examples demonstrates the relevance and realism of the
proposed eco-epidemiological framework.

2. The mathematical model

An eco-epidemiological simulation is comprised of prey and predator populations. The prey is
split into susceptible (S ) and infected (I) groups. The predators are considered continually healthy. We
will follow the following assumptions in building our model:

1. Initially, without disease, prey numbers follow a logistical curve of limited growth towards the
environment’s carrying capacity (K), fueled by a reproductive rate (α).

2. Two prey classifications exist: susceptible S (t) and infected I(t). Susceptibles alone breed,
allowing replenishment to K. Infecteds lack reproduction and resource competition during illness.
This realistically portrays functionality reductions when diseased.

3. Transmission between S and I employs a nonlinear incidence rate of βIS
1+I proposed by Gumel and

Moghadas [Gaber, Herdiana, Widowati, 2024]. βI represents infection pressure from the infected,
while 1

1+I incorporates hindrances from crowded infected.

4. Predators consume both prey classes equally.

5. Infected prey weakened state allows swift consumption, so handling time approaches zero,
simplifying to a Holling type I functional response.

6. Healthy prey faces a Holling type II response.

7. Resources only aid susceptible, with infected excluded due to illness. Moreover, infected evade
capacity constraints unlike susceptible experiencing Allee effects.
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First let us construct the model without Allee and refuge effects, and considering the above-
mentioned assumptions the model becomes:

dS
dT
= αS

(
1 − S

K

)
− βS I

1 + I
− m1S P

h + S
,

dI
dT
=
βS I
1 + I

− m2IP − d1I,

dP
dT
=

e1m1S P

h + S
+ e2m2IP − d2P.

(1)

Adding the Allee effect under assumption number 7:

dS
dT
= αS

(
1 − S

K

) ( S
k0

− 1

)
− βS I

1 + I
− m1S P

h + S
,

dI
dT
=
βS I
1 + I

− m2IP − d1I,

dP
dT
=

e1m1S P

h + S
+ e2m2IP − d2P.

(2)

Now by adding the refuge effect under assumption number 7 we get the model with the prey
refuge and Allee effect:

dS
dT
= αS

(
1 − S

K

) ( S
k0

− 1

)
− βS I

1 + I
− m1(1 − n)S P

h + (1 − n)S
,

dI
dT
=
βS I
1 + I

− m2IP − d1I,

dP
dT
=

e1m1(1 − n)S P

h + (1 − n)S
+ e2m2IP − d2P.

(3)

Here all the parameters are assumed to be positive constants.
Our suggested design intends offering a more inclusive and realistic representation of actual

predator – prey interactions. The behavioral dynamics observed in Toxoplasma gondii infections provide
a concrete example that reflects the assumptions in our models. For instance, the altered behavior of
infected prey leading to increased predation rates demonstrates how disease dynamics can influence
population interactions and stability. This real-world example validates the inclusion of mechanisms
such as differential predation and prey vulnerability, reinforcing the ecological relevance of our
framework. Additionally, examples of the Allee effect and prey refuge effect further support the
assumptions and outcomes of our models. For instance, the Allee effect is evident in African wild
dog (Lycaon pictus) populations, where group hunting efficiency and defense mechanisms decline as
population sizes drop, leading to lower survival rates [Courchamp, Clutton-Brock, Grenfell, 2000].
Similarly, Huffaker’s mite experiments demonstrated how introducing spatial refuges for prey species
significantly stabilized predator – prey dynamics [Hupfaker, 1958]. Furthermore, the crowding effect of
infected prey can be observed in amphibian populations impacted by chytrid fungus (Batrachochytrium
dendrobatidis), where high densities lead to increased transmission rates and accelerated population
declines [Catenazzi et al., 2011]. These examples underscore the robustness and applicability of our
proposed eco-epidemiological models, aligning theoretical constructs with real-world observations.

3. The dimensionless form of the model

In this section a parameter reduction is pursued by deriving dimensionless representations of the
model, simplifying the analysis.
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Let’s assume that:
sK = S , iK = I, pK = P, T =

t
α
.

Now we substitute into (1) and (3).
System (1) which is without Allee effect nor Prey refuge referred to as model B becomes:

ds
dt
= s(1 − s) − a2si

a3 + i
− b1sp

c1 + s
,

di
dt
=

a2si

a3 + i
− b2ip − c2i,

dp
dt
=

e1b1sp

c1 + s
+ e2b2ip − c3 p.

(4)

System (3) which is includes Allee effect and Prey refuge referred to as model A becomes:

ds
dt
= s(1 − s)(a1s − 1) − a2si

a3 + i
− b1(1 − n)sp

c1 + (1 − n)s
,

di
dt
=

a2si

a3 + i
− b2ip − c2i,

dp
dt
=

e1b1(1 − n)sp

c1 + (1 − n)s
+ e2b2ip − c3 p,

(5)

where a1 =
K
k0

, a2 =
β
α , a3 =

1
K , b1 =

m1
α , b2 =

m2K
α , c1 =

h
k , c2 =

d1
α , c3 =

d2
α

and a1, a2, a3, b1, b2, c1, c2, c3 > 0.
Moving on we will study two models: model A and model B.

4. Positivity and boundedness

In this section, establishing the model’s well-posed is the aim, by verifying positivity and
boundedness.

4.1. Existence and uniqueness of the solution for model A

Theorem 1. For system (5) with initial conditions s(0), i(0), p(0) greater than or equal to
zero, all solutions exist uniquely over the finite time interval [0, ξ] where 0 < ξ < ∞. Furthermore, the
solutions s(t), i(t), p(t) remain greater than or equal to zero throughout this period.

s(0) = s0 � 0, i(0) = i0 � 0, p(0) = p0 � 0, t � 0. (6)

Proof. From (5) we write:

ds
dt
= s(1 − s)(a1 s − 1) − a2si

a3 + i
− b1(1 − n)sp

c1 + (1 − n)s
= g1(x),

di
dt
=

a2si

a3 + i
− b2ip − c2i = g2(x),

dp
dt
=

e1b1(1 − n)sp

c1 + (1 − n)s
+ e2b2ip − c3 p = g3(x).

(7)

The phase space for the system (7) is

R3
+ =

{
(s, i, p) ∈ R3 : s � 0, i � 0, p � 0

}
.
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Given that the functions f1(x), f2(x), f3(x) defining the system are continuous on R3; therefore, these
functions are Lipschitzian on R3

+ with continuous partial derivatives, they satisfy the Lipschitz condition
on the nonnegative phase space R3

+. Therefore, according to theorems regarding the existence and
uniqueness of solutions for differential equations [Gaber, Herdiana, Widowati, 2024] the system defined
by equation (7) under the nonnegative initial condition specified in (6) will possess a single solution
that is defined on the interval [0, ε] for any epsilon choice where 0 < ε < ∞. In other words, given the
regularity properties of the functions governing the system dynamics, there exists a unique trajectory
satisfying the initial value problem over any finite time horizon. Integrating (7) with respect to initial
conditions, we get

s(t) = s(0)e

t∫
0

g1(s(x), i(x), p(x)) dx
� 0,

i(t) = i(0)e

t∫
0

g2(s(x), i(x), p(x)) dx
� 0,

p(t) = p(0)e

t∫
0

g3(s(x), i(x), p(x)) dx
� 0.

(8)

This proves the theorem. �

4.2. Uniformly boundedness of model A

The bounded nature suggests that our model comports well with biological principles. The
limited scope of the system, as defined by equation (5), is proven via Theorem 2.

Theorem 2. All solutions originating within the positive x-axis cube remain uniformly bounded.

Proof. The proof considers two initial s value scenarios.
Case 1: Let s(0) � 1 and we claim s(t) � 1.
We prove by contradiction; let’s assume s(t) � 1, then ∃t1, t2 such that s(t1) = 1 and s(t2) > 1

then ∀t ∈ (t1, t2] we say s(t) > 1 is true.
From (10) we can write

s(t) = s(0)e

t∫
0

f1(s(x), i(x), p(x)) dx
= s(0)e

t1∫
0

f1(s(x), i(x), p(x)) dx+
t∫

t1

f1(s(x), i(x), p(x)) dx

,

s(t) = s(t1)e

t∫
t1

f1(s(x), i(x), p(x)) dx

.

(9)

We have s(t1) = 1. Then (9) becomes:

s(t) = e

t∫
t1

f1(s(x), i(x), p(x)) dx

, (10)

but s(t) > 1 as in our assumption and

f1(s(t), i(t), p(t)) = s(t)(1 − s(t))(a1s(t) − 1) − a2s(t)i(t)

a3 + i(t)
− b1(1 − n)s(t)p(t)

c1 + (1 − n)s
< 0. (11)

a1 > 1 and s(t) > 1 as in our assumption, then f1(t) < 0. Going back to (10), we find s(t) < 1,
contradiction.

Case 2: Let s(0) > 1 and we claim lim
t→∞ sup s(t) � 1.

Suppose it is not true. Then s(t) > 1 and ∀t > 0 and so f1(t) < 0.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ



The impact of ecological mechanisms . . . 145

From l1 we have:

ds
dt
= s(1 − s)(a1s − 1) − a2si

a3 + i
− b1(1 − n)sp

c1 + (1 − n)s
, (12)

since s(t) > 1, it follows that

ds
dt
< s(1 − s)(a1s − 1) � s(1 − s)(a1 s − 1) < (1 − s) where s = lim

t→∞ inf s(t). (13)

Integrating (13) and letting t → ∞, we get s(t) < 1 when t → ∞, a contradiction. Hence,
lim
t→∞ sup s(t) � 1.

It suffices to demonstrate that the cumulative population, denoted by w and encompassing
susceptible, infected, and predator components, remains bounded at all t above zero. Equation (14)
represents the derivative of Γ:

w′ = s′ + i′ + p′ where ′ =
d
dt
. (14)

From (14) we have

w′ = s(1 − s)(a1 s − 1) − b1(1 − n)sp

c1 + (1 − n)s
(1 − e1) − b2ip(1 − e2) − c2i − c3 p � s(1 − s)(a1s − 1) − c2i − c3 p

we take μ = min{c2, c3}. Then:

w′ + μw � s(1 − s)(a1s − 1) − c2i − c3 p + μ(s + i + p) �

� s(1 − s)(a1s − 1) − c2i − c3 p + μ(s + i + p) � s[(1 − s)(a1s − 1) + μ] − (c2 − μ)i − (c3 − μ)p �

� s[(1 − s)(a1 s − 1) + μ] � s(−a1s2 + (a1 + 1)s − 1) + μs �

� −a1s

⎛⎜⎜⎜⎜⎜⎝s2 − a1 + 1

a1

s +

(
a1 + 1

2a1

)2⎞⎟⎟⎟⎟⎟⎠ − (1 − μ)s + a1s

(
a1 + 1

2a1

)2

� a1s

(
a1 + 1

2a1

)2

,

where 0 � s � 1,

w′ + μw � a1

(
a1 + 1

2a1

)2

= θ constant,

w′ + μw � θ =⇒ w′ � θ − μw.
Following the theory of differential inequality, we obtain

0 < w < w(0)e−μt − θ
μ

e−μt +
θ

μ
, (15)

where w(0) denotes the initial value of the total population.
Now for t → ∞ in (15) we get w < θμ ,

w <
a1

μ

(
a1 + 1

2a1

)2

. (16)

The information provided suggests that the overall population size w(t) which is described by
the function f has an upper limit as time increases towards infinity. Specifically, the source material

indicates that w(0) at the initial time t = 0 is bounded by the value
a1
μ

(
a1+1
2a1

)2
as the time t grows
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to infinity. By considering equations (15) and (16) together, one can thus conclude that the total
population w(t) is bounded as

0 � w(t) �
a1

μ

(
a1 + 1

2a1

)2

. (17)

As in (17), we can confirm that
a1
μ

(
a1+1
2a1

)2
is an upper bound of w(t). Therefore, the

feasible solution for our system (6) stays in the positively invariant region Ω, where Ω =

=

{
(s, i, p) ∈ R3

+ : w �
a1
μ

(
a1+1
2a1

)2
+ ξ ∀ξ > 0

}
. �

The bounded nature suggests that our model comports well with biological principles. The
limited scope of the system, as defined by equation (5), is proven via Theorem 2. In this theorem,
we demonstrate that all population sizes remain uniformly bounded, ensuring biological plausibility.
Real-world systems, such as the predator – prey dynamics influenced by Toxoplasma gondii, align with
this boundedness. The parasite-induced behavioral changes in prey populations illustrate the impact
of disease on stability and predator – prey interactions. Incorporating features such as prey refuge and
disease crowding effects further enhances the model’s robustness and its ability to mirror realistic
dynamics. In conclusion, we can confirm that the system defined by equation (5) has both biological
relevance and sound mathematical properties within the specified domain Ω.

5. Equilibrium analysis of model A

Here we will calculate the equilibrium points of model A and check their feasibility conditions.

5.1. Equilibrium points

Now using the Maple tool, we acquire the equilibrium points of the system in (5).

The system (5) has the following equilibrium points:

1. The trivial equilibrium point E0(0, 0, 0).

2. The axial equilibrium points E1(1, 0, 0), E2

(
1
a1
, 0, 0

)
.

3. The susceptible prey free equilibrium point (s-free equilibrium point) E3 =

(
0,

c3
e2b2
, − c2

b2

)
.

4. The disease-free equilibrium point (i-free equilibrium point) E4(s, 0, p),

s =
c1c3

(b1e1 − c3)(1 − n)
,

p =
e1c1

(b1e1 − c3)3(n − 1)3
(a1c1c3 + (b1e1 − c3)(n − 1))(c1c3 + (b1e1 − c3)(n − 1)).

The predator-free equilibrium points (p-free equilibrium points) E5 (s∗, i∗, 0), where

s∗ =
c2

a2

(
a3 + the roots of the cubic equation

(
v3z3 + v2z2 + v1z + v0

))
,

i∗ is the positive roots of the cubic equation
(
v3z3 + v2z2 + v1z + v0

)
v3 = a1c2

2, v2 = 3u1 − u2,

u1 = a1a3c2
2, u2 = a2c2(a1 + 1), v1 = a3(3u1 − 2u2) + a2

2(a2 + 1), v0 = a2
3(u1 − u2) + a3a2

2.
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5. Interior equilibrium points Ẽ( s̃, ĩ, p̃ ), s̃ = Q
G , ĩ are the positive roots of the equation

(
H4Z4 +

+ H3Z3 + H2Z2 + H1Z + H0

)
,

p̃ = −a3b2c2e2 ∗
(
the negative roots of the equation

(
L4Z4 + L3Z3 + L2Z2 + L1Z + L0

))
,

where

Q =
(
b2e2 ∗

(
the roots of the equation

(
Q4Z4 + Q3Z3 + Q2Z2 + Q1Z + Q0

))
− c3

)
c1,

G =
(
b2e2 ∗

(
the roots of the equation

(
G4Z4 +G3Z3 +G2Z2 +G1Z +G0

))
+ e1b1 − c3

)
(n − 1).

5.2. Feasibility for model A equilibria

It is clear that equilibria E0, E1, E2 are feasible, while E3 is not feasible, so a further analysis is
not necessary, E4 satisfies feasibility conditions under c3 < b1e1 and c1c3 < (b1e1 − c3)(1− n) < a1c1c3
to verify existence of E5 (s∗, i∗, 0) which represents a predator-free state (p-free equilibrium points),
one can examine the nonlinear algebraic system defined by

s(1 − s)(a1s − 1) − a2si

a3 + i
− b1(1 − n)sp

c1 + (1 − n)s
= 0,

a2si

a3 + i
− b2ip − c2i = 0,

e1b1(1 − n)sp

c1 + (1 − n)s
+ e2b2ip − c3 p = 0,

(18)

where s∗, i∗ > 0 and p∗ = 0.

Substituting s = s∗, i = i∗ and p = 0 into the system (18), we get

s∗
(
1 − s∗

) (
a1s∗ − 1

)
− a2s∗i∗

a3 + i∗
= 0,

a2s∗i∗

a3 + i∗
− c2i∗ = 0.

(19)

By summing equations (19),

s∗
(
1 − s∗

) (
a1s∗ − 1

)
− c2i∗ = 0,

i∗ =
s∗ (1 − s∗)

(
a1s∗ − 1

)

c2

.
(20)

But i∗ > 0, then

s∗ (1 − s∗)
(
a1s∗ − 1

)

c2

> 0,

s∗
(
1 − s∗

) (
a1s∗ − 1

)
> 0.

(21)

Therefore, E5 is feasible under the condition 1
a1
< s∗ < 1 and 1

c2a1
< i∗ < 1

c2
and a1 > 1.
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148 T. Gaber, Widowati, R. Herdiana

For the interior equilibrium point Ẽ(s̃, ĩ, p̃) is feasible if and only if there is a solution
where s̃, ĩ, p̃ > 0 to the following algebraic nonlinear system:

s̃(1 − s̃ )(a1 s̃ − 1) − a2 s̃ ĩ

a3 + ĩ
− b1(1 − n)s̃ p̃

c1 + (1 − n)s̃
= 0, (r1)

a2 s̃ ĩ

a3 + ĩ
− b2̃i p̃ − c2̃i = 0, (r2)

e1b1(1 − n)s̃ p̃

c1 + (1 − n)s̃
+ e2b2̃i p̃ − c3 p̃ = 0. (r3)

From (r3) we get

ĩ =
1

e2b2

(
c3 −

e1b1(1 − n)s̃

c1 + (1 − n)s̃

)
. (22)

When ĩ > 0, if c3 < b1e1 then (22) can be written as

s̃ <
c1c3

(1 − n)(e1b1 − c3)
. (23)

If c3 > b1e1 then (22) can be written as

s̃ >
c1c3

(1 − n)(e1b1 − c3)
. (24)

From (r2) we get

p̃ =
a2 s̃

b2(a3 + ĩ )
− c2

b2

, (25)

if p̃ > 0, then (25) becomes

ĩ <
a2 s̃ − a3c2

c2

, s̃ >
a3c2

a2

. (26)

Therefore, Ẽ is feasible under either the conditions

s̃ > max

{
a3c2

a2

,
c1c3

(1 − n)(e1b1 − c3)

}
, (27)

when c3 > b1e1 and 0 < ĩ <
a2 s̃−a3c2

c2
, or

a3c2

a2

< s̃ <
c1c3

(1 − n)(e1b1 − c3)
, (28)

when c3 < b1e1 and 0 < ĩ <
a2 s̃−a3c2

c2
.
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6. Stability analysis

The terminology “LAS” will be employed rather than “locally asymptotically stable” for brevity.
Determining LAS properties involves linearizing the system around each equilibrium and analyzing
the corresponding Jacobian matrix. Equilibria where all eigenvalues have negative real parts or the one
that satisfies the Routh Hurwitz criterion will be classified as LAS, indicating the ability to withstand
minor fluctuations and return to equilibrium.

Local stability analysis of model A

The Jacobean matrix for the system (5),

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

a1,1 = −3a1 s2 + 2(a1 + 1)s − 1 − a2i

a3 + i
− b1(1 − n)p

c1 + (1 − n)s
+

b1(1 − n)2sp

(c1 + (1 − n)s)2
,

a1,2 = −
a2s

a3 + i
+

a2si

(a3 + i)2
, a1,3 = −

b1(1 − n)s

c1 + (1 − n)s
, a2,1 =

a2i

a3 + i
,

a2,2 =
a2s

a3 + i
− a2si

(a3 + i)2
− b2 p − c2, a2,3 = −b2i, a3,1 =

e1b1(1 − n)p

c1 + (1 − n)s

(
1 − (1 − n)s

c1 + (1 − n)s

)
,

a3,2 = e2b2 p, a3,3 =
e1b1(1 − n)s

c1 + (1 − n)s
+ e2b2i − c3.

Now we analyze around each equilibrium point.
Around E0(0, 0, 0):

J0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1 0 0
0 −c2 0
0 0 −c3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

and the eigenvalues are λ1 = −1, λ2 = −c2, λ3 = −c3 since c2, c3 > 0 all negative real numbers ⇒
E0 is LAS.

Around E1(1, 0, 0):

J1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − a1 − a2
a3

− b1(1−n)
c1+1−n

0
a2
a3
− c2 0

0 0
e1b1(1−n)
c1+1−n − c3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and the eigenvalues are λ1 = 1 − a1, λ2 =
a2
a3
− c2, λ3 =

e1b1(1−n)
c1+1−n − c3. λ1 < 0 if 1 − a1 < 0 ⇒ a1 > 1,

λ2 < 0 if
a2
a3
− c2 < 0 =⇒ c2 >

a2
a3

, λ3 < 0 if
e1b1(1−n)
c1+1−n − c3 < 0 =⇒ c3 >

e1b1(1−n)
c1+1−n if a1 > 1 and c2 >

a2
a3

and c3 >
e1b1(1−n)
c1+1−n then λi < 0 ⇒ E1 is LAS where i = 1, 2, 3.

Around E2

(
1
a1
, 0, 0

)
:

J2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 1
a1

− a2
a1a3

− b1(1−n)

a1

(
c1+

1−n
a1

)

0
a2

a1a3
− c2 0

0 0
e1b1(1−n)
a1c1+1−n − c3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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and the eigenvalues are λ1 = 1 − 1
a1

, λ2 =
a2

a1a3
− c2, λ3 =

e1b1(1−n)
a1c1+1−n − c3, λ1 < 1 if a1 < 1, λ2 < 0

if c2 >
a2

a1a3
, λ3 < 0 if c3 >

e1b1(1−n)
a1c1+1−n .

E2 is LAS if a1 < 1 and c2 >
a2

a1a3
and c3 >

e1b1(1−n)
a1c1+1−n .

Since E2

(
1
a1
, 0, 0

)
and a1 < 1, E2 can be written as E2(M, 0, 0) where M > 1, so even though

this equilibrium point is mathematically stable, and make sense it doesn’t make sense from a biological
point of view and thus we will not analyze it any further.

Around E4

(
c1c3

(b1e1−c3)(1−n) , 0,
(
(n − 1)2(b1e1 − c3)2 + c1c3(n − 1)(a1 + 1)(b1e1 − c3) + a1c2

1c2
3

)
×

× e1c1
(b1e1−c3)3(n−1)3

)
:

J4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

A1,1 = −
c3

b1e1(b1e1 − c3)2(n − 1)2

(
(n − 1)2(b1e1 − c3)2+

+ a1c2
1c3(2b1e1 + c3) + c1(n − 1)(a1 + 1)

(
e2

1b2
1 − c2

3

))
,

A1,2 = a2c1

c3

(b1e1 − c3)(n − 1)a3

< 0, A1,3 = −
c3

e1

< 0,

A2,2 =
1

a3(b1e1 − c3)3(n − 1)3

(
c2a3(n − 1)3(c3 − e1b1)3 + c1(n − 1)2(c3 − e1b1)2(−b2a3e1 − a2c3)+

+c2
1b2a3e1c3(n − 1)(a1 + 1)(c3 − e1b1) − b2a3e1c2

3a1c3
1

)
,

A3,1 = −
a1c1c3 + (b1e1 − c3)(n − 1)

(n − 1)2(b1e1 − c3)b1

(c1c3 + (b1e1 − c3)(n − 1)) > 0

according to the feasibility conditions.

A3,2 =
b2e1c1e2

(−1 + n)3(b1e1 − c3)3
(c1c3 + (b1e1 − c3)(n − 1))(a1c1c3 + (b1e1 − c3)(n − 1)) > 0

according to the feasibility conditions.

A2,1 = A2,3 = A3,3 = 0.

And the characteristic equation is

λ3 + L2λ
2 + L1λ + L0 = 0,

L2 = −(A1,1 + A2,2), L1 = A1,1A2,2 − A1,3A3,1, L0 = A1,3A3,1A2,2.

According to the Routh Hurwitz Stability Criteria E4 is LAS if L2, L0 > 0 and L1L2 > L0.
If L2 > 0, then

A1,1 + A2,2 < 0. (η1)

If L0 > 0, then A1,3A3,1A2,2 > 0, A1,3 < 0 and A3,1 > 0 then A2,2 < 0 ⇒

c2a3(n − 1)3(c3 − e1b1)3 + c2
1b2a3e1c3(n − 1)(a1 + 1)(c3 − e1b1) >

> c1(n − 1)2(c3 − e1b1)2(b2a3e1 + a2c3) + b2a3e1c2
3a1c3

1. (η2)
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If L1L2 > L0, then
−A1,1A2,2(A1,1 + A2,2) + A1,3A3,1A1,1 > 0. (η3)

E4 is LAS with the conditions (η1), (η2), (η3).
Around E5 (s∗, i∗, 0):

J5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
B1,1 B1,2 B1,3
B2,1 B2,2 B2,3
B3,1 B3,2 B3,3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

B1,1 = −3a1s∗2 + (1 + 2a1)s∗ − a2i∗

a3 + i∗
, B1,2 = −

a2s∗

a3 + i∗
+

a2s∗i∗
(
a3 + i∗

)2
< 0,

B1,3 = −
b1(1 − n)s∗

c1 + (1 − n)s∗
< 0, B2,1 =

a2i∗

a3 + i∗
> 0, B2,2 =

a2s∗

a3 + i∗
− a2s∗i∗

(
a3 + i∗

)2
− c2,

B2,3 = −b2i∗ < 0, B3,1 = 0, B3,2 = 0, B3,3 =
e1b1(1 − n)s∗

c1 + (1 − n)s∗
+ e2b2i∗ − c3,

L2 = −(B1,1 + B2,2 + B3,3), L1 = B1,1B2,2 + B1,1B3,3 + B2,2B3,3 − B1,2B2,1,

L0 = B1,2B2,1B3,3 − B1,1B2,2B3,3.

According to the Routh Hurwitz Stability Criteria E4 is LAS if L2, L0 > 0 and L1L2 > L0.
If L2 > 0, then

B1,1 + B2,2 + B3,3 < 0. (ρ1)

If L0 > 0, then
B1,2B2,1B3,3 − B1,1B2,2B3,3 > 0. (ρ2)

If L1L2 > L0, then

−(B1,1 + B2,2 + B3,3)(B1,1B2,2 + B1,1B3,3 + B2,2B3,3 − B1,2B2,1) > B1,2B2,1B3,3 − B1,1B2,2B3,3. (ρ3)

E5 is LAS with the conditions (ρ1), (ρ2), (ρ3).

Around Ẽ( s̃, ĩ, p̃ ):

J̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
C1,1 C1,2 C1,3
C2,1 C2,2 C2,3
C3,1 C3,2 C3,3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

C1,1 = −3a1 s̃ 2 + (1 + 2a1)s̃ − a2̃i

a3 + ĩ
− b1(1 − n)p̃

c1 + (1 − n)s̃
+

b1(1 − n)2 s̃ p̃

(c1 + (1 − n)s̃ )2
,

C1,2 = −
a2 s̃

a3 + i∗
+

a2 s̃ ĩ

(a3 + ĩ )2
< 0, C1,3 = −

b1(1 − n)s̃

c1 + (1 − n)s̃
< 0, C2,1 =

a2̃i

a3 + ĩ
> 0,

C2,2 =
a2 s̃

a3+ ĩ
− a2 s̃ ĩ

(a3 + ĩ )2
− b2 p̃ − c2, C2,3 = −b2̃i < 0, C3,1 =

e1b1(1 − n)p̃

c1 + (1 − n)s̃

(
1 − (1 − n)s̃

c1 + (1 − n)s̃

)
> 0,

C3,2 = e2b2 p̃ > 0, C3,3 =
e1b1(1 − n)s̃

c1 + (1 − n)s̃
+ e2b2̃i − c3,

L2 = −(C1,1 +C2,2 +C3,3), L1 = C1,1C2,2 +C1,1C3,3 +C2,2C3,3 −C1,2C2,1 −C2,3C3,2 −C1,3C3,1,

L0 = C1,3C3,1C2,2 +C1,2C2,1C3,3 +C1,1C2,3C3,2 −C1,3C2,1C3,2 −C1,1C2,2C3,3 −C1,2C3,1C2,3.
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According to Routh Hurwitz Stability Criteria Ẽ is LAS if L2, L0 > 0 and L1L2 > L0.
The stability outcomes align with observations in real-world systems, such as the role of

Toxoplasma gondii in modulating prey – predator dynamics. These parallels between theory and
ecological evidence underscore the applicability of our models in understanding and predicting complex
interactions in natural ecosystems.

7. Extinction scenarios of the model A

In this section we shall build the conditions under which the predator and prey extinction will
occur in the long term.

Take s = lim
t→∞ sup s(t), s = lim

t→∞ inf s(t), i = lim
t→∞ sup i(t), i = lim

t→∞ inf i(t), p = lim
t→∞ sup p(t), p =

= lim
t→∞ inf p(t) and from earlier we have s(t) � 1 and let’s say i(t) � M as we have proven that all the

solutions are uniformly bounded.

Theorem 3. If s < 1
a1

then lim
t→∞ s(t) = 0.

Proof. Suppose it is not true s(t) = μ � 0.
Choose ε s.t. 0 < ε < 1

a1
− s. Then ∃T1 > 0 s.t. s(t) < μ + ε, ∀t > T1.

Also, by definition we have for ε > 0 ∃T2 > 0 s.t. s(t) < s + ε, ∀t > T2. ∀t > max{T1, T2}:

s(t) = s(0)e

t∫
0

(
s(1−s)(a1 s−1)− a2 si

a3+i−
b1(1−n)sp

c1+(1−n)s

)
dx
< s(0)e

t∫
0

s(1−s)(a1 s−1) dx
� s(0)e

t∫
0

(1−s)(a1 s−1) dx
<

< s(0)e

t∫
0

a1

(
s+ε− 1

a1

)
dx
→ 0.

So, as t → ∞ s(t)→ 0; which is a contradiction.
We can conclude that even if we ignore the predation and the disease spread, the Allee effect is

enough to drive the prey to extinction in the system. �

Theorem 4. If i >
2a3

(
1− 1

a1

)

a2
a1
−2

(
1− 1

a1

) then lim
t→∞ s(t) = 0.

Proof. Suppose it is not true that s(t) = μ � 0.
Choose ε s.t. 0 < ε < 1 − 1

a1
. Then ∃T1 > 0 s.t. s(t) < 1 + ε, ∀t > T1.

Also, by definition we have for

0 < δ < i −
2a3

(
1 − 1

a1

)

a2
a1
− 2

(
1 − 1

a1

) ∃T2 > 0 s.t. i(t) > i − δ, ∀t > T2.

∀t > max{T1, T2}:

s(t) = s(0)e

t∫
0

(
s(1−s)(a1 s−1)− a2 si

a3+i−
b1(1−n)sp

c1+(1−n)s

)
dx
< s(0)e

t∫
0

s
(
(a1s−1)− a2i

a3+i

)
dx
< s(0)e

t∫
0

s
(
2a1

(
1− 1

a1

)
− a2(i−δ)

a3+(i−δ)
)

dx
→ 0.

So, as t → ∞ s(t)→ 0; which is a contradiction.
We conclude that when the Allee effect is very strong (a1 ≈ 1) the suspectable prey is likely to

face extinction due to the slightest spread of infection. We also notice that when the disease spread in
the prey population reaches a very high rate the susceptible prey is driven to extinction. �
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Theorem 5. If p >
2c1(a1−1)
b1(1−n) +

4a2
1+2

a1
−6

b1
then lim

t→∞ s(t) = 0.

Proof. Suppose it is not true that s(t) = μ � 0.
Choose ε s.t. 0 < ε < 1 − 1

a1
. Then ∃T1 > 0 s.t. s(t) < 1 + ε, ∀t > T1.

Also, by definition we have for

0 < δ < p −
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2c1(a1 − 1)

b1(1 − n)
+

4a2
1+2
a1
− 6

b1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∃T2 > 0 s.t. p(t) > p − δ, ∀t > T2.

∀t > max{T1, T2}:

s(t) = s(0)e

t∫
0

(
s(1−s)(a1 s−1)− a2 si

a3+i−
b1(1−n)sp

c1+(1−n)s

)
dx
< s(0)e

t∫
0

s
(
(a1s−1)− b1(1−n)sp

c1+(1−n)s

)
dx
<

< s(0)e

t∫
0

s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝2a1

(
1− 1

a1

)
− b1(1−n)(p−δ)

c1+(1−n)

(
2− 1

a1

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ dx

< s(0)e

t∫
0

(
−W1

(
W2W3

b1(1−n)+(p−δ)
))

dx
< 0,

W1 =
b1(1 − n)s

c1 + (1 − n)
(
2 − 1

a1

) , W2 = −2a1

(
1 − 1

a1

)
, W3 = c1 + (1 − n)

(
2 − 1

a1

)
.

So, as t → ∞ s(t)→ 0; which is a contradiction.
Our first observation is that when the Allee effect is very strong (a1 ≈ 1) it’s very likely that the

suspectable prey is going to face extinction as long as the system has a predator population (however
small). Another observation is that the prey refuge effects the system ability to sustain the existence
of the susceptible prey and prevent extinction. Finally, we can state that with predator getting more
aggressive the suspectable is more likely to wash out of the system. �

Theorem 6. If i >
a2(1+ε)

c2
− a3 then lim

t→∞ i(t) = 0.

Proof. Let lim
t→∞ i(t) = μ � 0.

For a really small ε, ∃T1 > 0 s.t. s(t) < 1 + ε, ∀t > T1.
Also, by definition we have for

0 < δ < i − a2(1 + ε)

c2

+ a3 ∃T2 > 0 s.t. i(t) > i − δ, ∀t > T2.

∀t > max{T1, T2}:
di
dt
=

a2si

a3 + i
− b2ip − c2i <

(
a2s

a3 + i
− c2

)
i <

(
a2(1 + ε)

a3 + i
− c2

)
i <

(
a2(1 + ε)

a3 + (i − δ) − c2

)
i,

i(t) < i(0)e

t∫
0

(
a2(1+ε)

a3+(i−δ)−c2

)
i dx
→ 0

as t → ∞ contradiction.
We can conclude that the nonlinear incidence rate adds a level of complexity to the system;

developing a new case where the infected prey faces extinction.
If we take the system without the nonlinear incidence rate the expression di

dt is going to be written
as; di

dt = ω2si − b2ip − c2i < (ω2s − c2)i < (ω2(1 + ε) − c2)i and it would be enough to say if c2 > ω2

then lim
t→∞ i(t) = 0 where ω2 =

βk
α and εω2 < c2 − ω2. �

2025, Т. 17, № 1, С. 139–169



154 T. Gaber, Widowati, R. Herdiana

Theorem 7. If p >
a2(1+ε)
b2(a3+i) then lim

t→∞ i(t) = 0.

Proof. Let lim
t→∞ i(t) = μ � 0.

For a really small ε, ∃T1 > 0 s.t. s(t) < 1 + ε, ∀t > T1.

Also, by definition we have for 0 < δ < p − a2(1+ε)
b2(a3+i) ∃T2 > 0 s.t. p(t) > p − δ, ∀t > T2.

We also have i(t) � i for any t, ∀t > max{T1, T2}:

di
dt
=

a2si

a3 + i
− b2ip − c2i <

(
a2s

a3 + i
− b2 p

)
i <

(
a2(1 + ε)

a3 + i
− b2 p

)
i <

(
a2(1 + ε)

a3 + i
− b2(p − δ)

)
i,

i(t) < i(0)e

t∫
0

(
a2(1+ε)

a3+i −b2(p−δ)
)
i dx
→ 0

as t → ∞, a contradiction.

We can conclude that even when predation is the cause driving the infected prey to extinction,
the nonlinear incidence rate still adds a level of complexity to the system.

If we take the system without the nonlinear incidence rate the expression di
dt is going to be written

as; di
dt = ω2si − b2ip − c2i < (ω2s − b2 p)i < (ω2(1 + ε) − b2(p − δ))i and it would be enough to say

if p >
ω2(1+ε)

b2
then lim

t→∞ i(t) = 0 where 0 < δ < p − ω2(1+ε)
b2

and ε > 0 is very small. �

Theorem 8. If i <
c3−e1b1

e2b2
then lim

t→∞ p(t) = 0.

Proof. Let lim
t→∞ p(t) = μ � 0.

From the definition 0 < δ < i >
c3−e1b1

e2b2
∃T1 > 0 s.t. i(t) < i + δ, ∀t > T1.

We write

dp
dt
=

e1b1(1 − n)sp

c1 + (1 − n)s
+ e2b2ip − c3 p =

⎛⎜⎜⎜⎜⎜⎜⎝
e1b1

c1
(1−n)s + 1

+ e2b2i − c3

⎞⎟⎟⎟⎟⎟⎟⎠ p < (e1b1 + e2b2(i + δ) − c3)p,

p(t) < p(0)e

t∫
0

(e1b1+e2b2(i+δ)−c3)p dx
→ 0

as t → ∞, a contradiction.

We can conclude that in the existence of prey refuge for susceptible prey, the infected prey plays
the main role in the survival of the predator. This suggests that the infected prey is more preferable
than the susceptible prey to the predator. �

8. Global stability

In this section, we shall discuss the Global stability of the local asymptotically stable points from
earlier E0, E1, E4 of model A.

Global stability of the equilibrium point E0(0, 0, 0)

For E0(0, 0, 0) the system is globally asymptotically stable if the conditions of Theorems 3, 7,
8 or 4, 6, 7 or 5, 7, 8 or 3, 6, 8 or 4, 6, 8 or 5, 6, 8 are satisfied.
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Global stability of the equilibrium point E1(1, 0, 0)

To prove the stability of our equilibrium points, we will be using the Lyapunov method. The
Lyapunov function that we will be using is often used in ecological models and epidemic models in
the following form [Liu, Zhang, 2011]:

n∑
i=1

ai

(
xi − x∗i − x∗i ln

xi

x∗i

)
.

Adjusting to our system of equations, we form the function L : Ω ∈ R3 → R with:

L(s, i, p) =
(
s − s∗ − s∗ ln

s
s∗

)
+ a1

(
i − i∗ − i∗ ln

i
i∗

)
+ a2

(
p − p∗ − p∗ ln

p
p∗

)
,

where ∀(s, i, p) ∈ Ω and a1, a2, a3 are real numbers. The function L is a Lyapunov function because it
fulfills the definition of the Lyapunov function which will be shown as follows.

The function L is continuous in Ω because it contains logarithms and has a first partial derivative
that is continuous in Ω. For any E = (s, i, p) ∈ Ω with � E∗, then L(t) > 0, then if E = E∗ then L(t) = 0.

It will be shown that L(t) > 0 when E � E∗.
Suppose E

E∗ = q and (q) = E − E∗ − E∗ ln E
E∗ , then:

g(q) = E − E∗ − E∗ ln
E
E∗
,

g(q) = E∗(q − 1 − ln q).

Note that point q = 1 is the minimum point of g(q) where g(1) = 0, because g′(1) = 0 and g′′(q) =
= 1

q2 > 0. Thus, we get g(q) = E − E∗ − E∗ ln E
E∗ > 0, for E � E∗.

Now we modify the Lyapunov function to apply on E1, so we take

L1(s, i, p) = (s − 1 − ln s) + i + p.

L1 is obviously positive definite and continuous on

Π1 =

{
(s, i, p) ∈ R3

+ : s >
1
a1

, a1 > 1, c2 >
a2

a3

, c3 >
e1b1(1 − n)

c1 + 1 − n

}
.

Furthermore,

dL1

dt
=

s − 1
s

(
s(1 − s)(a1s − 1) − a2si

a3 + i
− b1(1 − n)sp

c1 + (1 − n)s

)
+

+
a2si

a3 + i
− b2ip − c2i +

e1b1(1 − n)sp

c1 + (1 − n)s
+ e2b2ip − c3 p = −(1 − s)2(a1s − 1) +

(
a2

a3 + i
− c2

)
i+

+
b1(1 − n)p

c1 + (1 − n)s
(e1 − 1) + b2ip(e2 − 1) +

(
b1(1 − n)p

c1 + (1 − n)s
− c3

)
p

in Π1 we have s > 1
a1

and from the local stability conditions we have c2 >
a2
a3

and c3 >
e1b1(1−n)
c1+1−n .

We get
dL1
dt < 0.

Also, L1(1, 0, 0) = 0 as the only solution of model (7) that satisfies s = 1 is the equilibrium,
LaSalle Theorem [Cui, Du, Wang, 2020] implies GAS.
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Global stability of the equilibrium point E4(s, 0, p)

Now we modify the Lyapunov function to apply on E4(s, 0, p), so we take

L4(s, i, p) = A
(
s − s + s ln

s
s

)
+ i + B

(
p − p − p ln

p
p

)
, A > 0.

L4 is obviously positive definite and continuous on

Π4 =

{
(s, i, p) ∈ R3

+ : 0 < s <
1
a1

<
c1c3

(b1e1 − c3)(1 − n)
< 1,

e1c1(a1c1c3 + (b1e1 − c3)(n − 1))(c1c3 + (b1e1 − c3)(n − 1))

(b1e1 − c3)3(n − 1)3
< p < 1,

c2 >
a2

a3

>
a2c1c3

a3(b1e1 − c3)(1 − n)

}
.

Furthermore,

dL4

dt
= A

(
s
s
− 1

) (
s(1 − s)(a1 s − 1) − a2si

a3 + i
− b1(1 − n)sp

c1 + (1 − n)s

)
+

+
a2si

a3 + i
− b2ip − c2i + B

(
1 − p

p

) (
e1b1(1 − n)sp

c1 + (1 − n)s
+ e2b2ip − c3 p

)
= A(s − s)(1 − s)(a1s − 1)−

− A(s − s)
a2i

a3 + i
− A

b1(1 − n)p

c1 + (1 − n)s
(s − s) +

a2si

a3 + i
− c2i + b2i(B(p − p)e2 − p)+

+ B(p − p)

(
(e1b1 − c3)(1 − n)s − c3c1

c1 + (1 − n)s
− c3(1 − n)s

c1 + (1 − n)s

)
< A(s − s)(1 − s)(a1s − 1)−

−A(s− s)
a2i

a3 + i
−A

b1(1 − n)p

c1 + (1 − n)s
(s− s)+

(
a2

a3

− c2

)
i+b2i(B(p− p)e2− p)+B(p− p)

(e1b1−c3)(1−n)−a1c3c1
a1

c1 + (1 − n)s
.

Set A > 0 and 0 < B < 1.

In Π4 we have p > p, s < 1
a1
< s and c2 >

a2
a3

.

From the feasibility conditions of E4 we have a1c3c1 > (e1b1 − c3)(1 − n).

We get
dL4
dt < 0.

Also, L4(s, 0, p) = 0 as the only solution of model (5) that satisfies s = s, p = p and i = 0 is the
equilibrium, LaSalle Theorem implies GAS.

9. Bifurcation analysis

In this section we explored bifurcations that might occur in system (5) using Sotomayor’s
Theorem [Mondal, Samanta, 2020].

Theorem 9. System (5) undergoes a transcritical bifurcation with respect to the bifurcation

parameter C3 around E1(1, 0, 0) if, c3 =
e1b1(1−n)
c1+1−n = c3[TC1] keeping the following condition, c2 >

a2
a3

and a1 > 1.
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Proof. For E1(1, 0, 0) we have the following eigenvalues: λ1 = 1 − a1, λ2 =
a2
a3
− c2, λ3 =

=
e1b1(1−n)
c1+1−n − c3,

J1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − a1 − a2
a3

− b1(1−n)
c1+1−n

0
a2
a3
− c2 0

0 0
e1b1(1−n)
c1+1−n − c3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

If we take c3 =
e1b1(1−n)
c1+1−n the eigenvalues can be written as λ1 = 1 − a1, λ2 =

a2
a3
− c2, λ3 = 0 and the

Jacobean matrix can be written as

J1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 − a1 − a2

a3
− b1(1−n)

c1+1−n

0
a2
a3
− c2 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Now the eigenvector corresponding to λ = 0 for J1; λ ∗ V = J ∗ V ,

V =

(
1, 0,

(1 − a1)(c1 + 1 − n)

b1(1 − n)

)T

the eigenvector corresponding to λ = 0 for JT
1 ; λ ∗ U = JT ∗ U, U = (0, 0, 1)T and then we can write

Ω1 = WT ∗ fc3

(
E1, C3[TC1]

)
= 0,

Ω2 = WT ∗
[
D fc3

(
E1, C3[TC1]

)
V
]
= − (1 − a1)(c1 + 1 − n)

b1(1 − n)
� 0,

Ω3 = WT ∗
[
D fc3

(
E1, C3[TC1]

)
(V, V)

]
=

2c1e1(1 − a1)

c1 + (1 − n)
� 0.

According to Sotomayor’s theory there is a transactional bifurcation at E1(1, 0, 0) for C3 = C3[TC1]. �

10. Numerical simulation and discussion

We conducted numerical simulations to verify our analytic theoretical findings using the fourth-
order Runge – Kutta subjected to the positive initial conditions s(0) = s0, i(0) = i0, p(0) = p0 using
MATLAB R2022a. we carried out the numerical simulations with an assumed set of parameters to test
the effect of certain factors such as the Allee effect, prey refuge, predation rates, etc.

GP = {a1 = 1.2, a2 = 0.02, a3 = 0.002, b1 = 1.1, b2 = 500, c1 = 0.1, c2 = 11, c3 = 0.4,
e1 = 0.35, e2 = 0.5, n = 0.5}, with the initial conditions IC0 = {s0 = 0.65, i0 = 0.4, p0 = 0.2}, and then
varying some of the parameters’ value according to the feasibility, LAS and GAS conditions of each
feasible equilibrium point we have.

The simulations in (Fig. 1) confirms our theoretical findings, showing that the trajectories of the
system are globally asymptotically stable at E0. We used the same parametric values as in GP along
with the initial values IC0. The graph visually demonstrates how the system’s trajectories approach
the equilibrium point, providing further evidence for the stability of E0 in the eco-epidemiological
model. It can also be observed from comparing Fig. 1, a and Fig. 1, b that the prey refuge slows
the extinction as it reduces the interaction between the predator and the prey. In Fig. 1, c it is seen
that the equilibrium point E0 becomes unfeasible and the solutions approaches the stable equilibrium
point E1(1, 0, 0) [Gaber, Herdiana, Widowati, 2024].
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Figure 1. MATLAB simulation for globally stable behavior of E0. The graph depicts the trajectories of a system
approaching the stable equilibrium point. The x-axis represents time, while the y-axis represents the values of
the system. (a) with refuge and Allee effect, (b) without prey refuge, (c) without prey refuge nor the Allee effect

The MATLAB simulation presented in (Fig. 2) demonstrates the globally stable behavior
of equilibrium point E1(1, 0, 0), confirming our theoretical findings. We obtain E1 by raising the
value of a1 to 3.4, keeping the other values in GP the same. The graph showcases four distinct
scenarios (a, b, c, and d).

In Fig. 2, a, both the refuge and Allee effect are considered, the trajectories of the system
approach the stable equilibrium point E1(1, 0, 0). This indicates that the presence of prey refuge and
the Allee effect contribute to the system’s stability.

In Fig. 2, b, the absence of prey refuge leads to the washout of all three species from the system.
Consequently, the trajectories approach the stable equilibrium point E0. This highlights the significance
of prey refuge in maintaining the population dynamics and preventing extinction.

Figure 2, c explores the impact of eliminating or reducing the prey refuge while increasing
the value of parameter a1 to 3.8. The trajectories in this scenario approach the stable equilibrium
point E1(1, 0, 0), suggesting that lowering the Allee effect threshold becomes crucial in preventing
extinction when prey refuge is eliminated or reduced.

Finally, Fig. 2, d investigates the system’s behavior without both prey refuge and the Allee
effect. As previously suggested by [Gaber, Herdiana, Widowati, 2024], the trajectories in this case also
converge towards the stable equilibrium point E1(1, 0, 0).
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Figure 2. MATLAB simulation for Globally stable behavior of E1. The graph depicts the trajectories of a system
approaching the stable equilibrium point E1(1, 0, 0). The x-axis represents time, while the y-axis represents the
values of the system. (a) with refuge and Allee effect, (b) without prey refuge and we can notice that for the
same parametric values the 3 species wash-out of the system and the trajectories approach the stable equilibrium
point E0, (c) without prey refuge raising a1 value to 3.8, (d) without prey refuge nor the Allee effect [Gaber,
Herdiana, Widowati, 2024]

The MATLAB simulation presented in (Fig. 3) demonstrates the globally stable behavior of
equilibrium point E4 confirming our theoretical findings. The parameters used in the simulation are as
in GP except for a1 = 3.8 and c3 = 0.3. The graph showcases four distinct scenarios (a, b, c, and d).

Figure 3, a represents the system with both prey refuge and the Allee effect. The trajectories in
this scenario approach the stable equilibrium point E4(s, 0, p). This observation confirms the globally
stable behavior of E4 when these factors are considered.

In Fig. 3, b, the absence of prey refuge results in the washout of all three species from the
system. The trajectories converge towards the stable equilibrium point E0, emphasizing the crucial role
of prey refuge in maintaining population dynamics and preventing extinction.

Figure 3, c explores the impact of eliminating or reducing the prey refuge while simultaneously
decreasing parameter b1 from 1.1 to 0.95. The trajectories in this scenario approach the stable
equilibrium point E4(s, 0, p). This suggests that, if we decrease or eliminate the prey refuge, the
predation rate would need to be reduced to prevent extinction.
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Figure 3. MATLAB simulation for Globally stable behavior of E4. The graph depicts the trajectories of a system
approaching the stable equilibrium point E4(s, 0, p). The graph consists of four figures (a, b, c, and d) that
showcase different scenarios. Figure 3, a represents the system with both prey refuge and the Allee effect. The
trajectories in this scenario approach the stable equilibrium point E4(s, 0, p). In Fig. 3, b, the absence of prey
refuge results in the washout of all three species from the system. Figure 3, c explores the impact of eliminating
or reducing the prey refuge while simultaneously decreasing parameter b1 from 1.1 to 0.95. Lastly, Fig. 3, d
investigates the system’s behavior without both prey refuge and the Allee effect. The trajectories in this case
exhibit an unstable state around E4(s, 0, p)

Lastly, Fig. 3, d investigates the system’s behavior without both prey refuge and the Allee effect.
The trajectories in this case exhibit an unstable state around E4(s, 0, p), indicating that the absence of
prey refuge and the Allee effect may lead to instability in the system.

Overall, this MATLAB simulation provides valuable insights into the significance of considering
factors such as prey refuge and the Allee effect in eco-epidemiological models. The diverse scenarios
presented in the graphs exemplify the importance of comprehensive analysis to ensure the stability and
preservation of ecological systems.

Based on the portrait phase in (Fig. 4), we have observed an unstable limit cycle initially. This
means that the system exhibits oscillations around a closed trajectory.

As time progresses, the trajectory appears to move toward the equilibrium point E4. This
behavior suggests that the system is transitioning from the unstable limit cycle toward a stable state.

The MATLAB simulation presented in (Fig. 5) demonstrates the globally stable behavior of
equilibrium point E5(s, i, 0), confirming our theoretical findings. We made the following changes
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Figure 4. Dynamics Portrait Phase for the solution of the model A around E4. This 3D plot illustrates the
behavior of the studied predator – prey system. The trajectory (shown in blue) starts with an unstable limit cycle,
spiraling around the equilibrium point E4. As time progresses, the system transitions toward stability, converging
toward E4

on GP, a1 = 3.4, b2 = 0.25, c2 = 0.1. The graph consists of three figures (a, b, c) that showcase
different scenarios.

Figure 5, a represents the system with both prey refuge and the Allee effect. The susceptible
prey population (S ) remains relatively constant at around 1. Infected prey (I) stabilizes near 0.2 and the
predator (P) populations washes out of the system and stabilize close to zero. With both the prey refuge
and Allee effect in place, the system achieves a stable equilibrium point E5. The higher susceptible
prey population ensures better control over infected prey and predators. In Fig. 5, b we explore the
absence of prey refuge. Susceptible prey (S ) still stabilizes at around 1, but it takes more time to
reach stability compared to Fig. 5, a. Infected prey (I) and predator (P) populations remain minimal
but slightly higher than in Fig. 5, a. Without prey refuge, there is a slight increase in predator and
infected prey populations, but the system still maintains control. Figure 5, c investigates the system’s
behavior without both prey refuge and the Allee effect. The stabilization patterns are similar to those
shown in Fig. 5, b, but susceptible prey (S ) stabilizes more quickly. It can be noticed that removing
both effects leads to quicker stabilization of susceptible prey while keeping infected prey and predators
at low levels.

The MATLAB simulation presented (in Fig. 6) demonstrates the globally stable behavior of
equilibrium point Ẽ(s̃, ĩ, p̃) confirming our theoretical findings. We made the following changes on GP,
a1 = 3.4, a2 = 0.08, b2 = 1.5, c1 = 0.1, c2 = 0.1. The graph consists of three figures (a, b, c) that
showcase different scenarios.

Figure 6, a includes both prey refuge and the Allee effect. All three species stabilize at specific
population levels around the equilibrium point Ẽ. It is noticeable that Susceptible Prey (S ) population
stabilizes at a relatively high level. Infected Prey (I) population also stabilizes but at a lower level than
susceptible prey. Predators (P) population stabilizes, maintaining the lowest population level among
the three species.

Figure 6, b shows the absence of prey refuge. Both the susceptible prey (S ) and infected prey (I)
populations become extinct. Predators (P) population also goes extinct. The absence of prey refuge
leads to the collapse of the entire system.

Figure 6, c explores the system’s behavior without both prey refuge and the Allee effect. The
infected prey population (I) stabilizes at a low level, similar to Fig. 6, a. Susceptible Prey (S ) population
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Figure 5. MATLAB simulation for Globally stable behavior of E5. The graph depicts the trajectories of a system
approaching the stable equilibrium point E5(s, i, 0). The graph consists of three figures (a, b, c) that showcase
different scenarios. Figure 5, a represents the system with both prey refuge and the Allee effect. Figure 5, b
shows the case of the absence of prey refuge. Figure 5, c explores the system’s behavior without both prey
refuge and the Allee effect. In the three cases the trajectories in this scenario approach the stable equilibrium
point E5

stabilizes similarly to Fig. 6, a. Predators (P) also stabilize, with their population level resembling that
of Fig. 6, a.

In Fig. 7, we explore different values for the parameter a2 around Ẽ.

Figure 7, a (for a2 = 0.2). This scenario corresponds to a higher infection rate relative to the
growth rate of susceptible prey. The infected prey population (I) stabilizes at a low level. Susceptible
Prey (S ) population remains stable. Predators (P) population stabilizes, similar to Fig. 6. Figure 7, b
(for a2 = 0.15). Here, we consider a slightly lower infection rate compared to Fig. 7, a. Infected
prey (I) population stabilizes at a slightly lower level than in Fig. 7, a. Susceptible Prey (S ) population
remains stable but at a higher level than Fig. 7, a. Predators (P) population stabilizes, at a lower level
than Fig. 7, a. Figure 7, c (for a2 = 0.1). In this case, we explore an even lower infection rate. Infected
prey (I) population stabilizes at a slightly lower level than in Fig. 7, a. Susceptible Prey (S ) population
remains stable but at a higher level than Fig. 7, a. Predators (P) population stabilizes, at a lower level
than Fig. 7, a. We can notice that lowering the infection rate raises the level of the susceptible prey
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Figure 6. MATLAB simulation for Globally stable behavior of Ẽ(s̃, ĩ, p̃). The graph depicts the trajectories
of a system approaching the stable equilibrium point Ẽ( s̃, ĩ, p̃ ). The graph consists of three figures (a, b, c)
that showcase different scenarios. Figure 6, a represents the system with both prey refuge and the Allee effect.
Figure 6, b shows the case of the absence of prey refuge. Figure 6, c explores the system’s behavior without both
prey refuge and the Allee effect

population and lower the predator population level. However, it is only slightly reducing the infected
prey population rate.

The graphical representation in (Fig. 8) provides valuable insights into the dynamics of our
eco-epidemiological model.

Figure 8, a (c3 = 0.33): at this parameter value, both equilibrium points E1(1, 0, 0)
and E4(s, 0, p) are stable but remain separate from each other. The system exhibits a predictable
behavior, with no significant changes in stability around E1. Figure 8, b (c3 = 0.320833): as we
approach the bifurcation value, E1 and E4 collide this event is known as transcritical bifurcation.
During this collision, the stability properties of the equilibrium points switch places. E1 loses stability,
while E4 gains stability. This phenomenon confirms our theoretical predictions and highlights the
critical role of parameter c3. Figure 8, c (c3 = 0.32): just below the bifurcation value, only E4 remains
stable post-collision. The system settles into a new equilibrium configuration, where E4 dominates.
Figure 8, d (c3 = 0.3): further reducing c3 maintains the newfound stability. E4 continues to be the
stable point, emphasizing the lasting impact of the bifurcation event.
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Figure 7. Study of predator – prey dynamics around Ẽ(s̃, ĩ, p̃) with varying infection rate. (a) a2 = 0.2; (b) a2 =

= 0.15; (c) a2 = 0.1

Figure 9 shows the solution behavior and phase portraits of an eco-epidemiological model under
different parameter specifications with parameters’ values of (b1 = 0.35, c1 = 0.101123595, c2 =

= 0.3, c3 = 0.1). Figures 9, a and 9, b depict the base model without an Allee effect or susceptible
prey refuge. In this scenario, a Hopf bifurcation occurs as the parameter c1 is varied, indicated by
the limit cycle emerging in graph 9, b. This demonstrates that the dynamics of the system transition
from a stable equilibrium to oscillations see [Gaber, Herdiana, Widowati, 2024]. Figures 9, c and 9, d
examine the impact of including an Allee effect (a1 = 3.8) and susceptible prey refuge (n = 0.5) on
the model’s behavior. Notably, the limit cycle disappears, and the solutions converge monotonically
to a single stable equilibrium point (E4). This implies that accounting for an Allee threshold below
which population growth is slowed and the existence of a refuge that removes susceptible prey from
interaction stabilizes the system. No bifurcation dynamics are present.

11. Conclusion

In this study, we developed two eco-epidemiological models to investigate population dynamics
accounting for disease transmission alongside predator – prey and refuge-seeking interactions. The
overarching goal was to evaluate how the inclusion of prey refuge habitat and an Allee effect might
impact system stability and resilience.
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Figure 8. Dynamics of the eco-epidemiological model around equilibrium point E1(1, 0, 0). In this figure, we
explore the impact of the parameter c3 (the natural death rate of the predator divided by the growth rate of the
susceptible prey) on the behavior of the system. The figure comprises four subfigures labeled a, b, c, and d,
each corresponding to different values of c3. Figure 8, a (c3 = 0.33): at this value, the system exhibits a stable
behavior around E1. Figure 8, b (c3 = 0.320833): here, we encounter a critical point (the bifurcation value). The
equilibrium points E1(1, 0, 0) and E4(s, 0, p) collide, leading to a significant change in stability. Figure 8, c
(c3 = 0.32): just below the bifurcation value, we observe the aftermath of the collision. E1 loses stability,
while E4 gains stability. Figure 8, d (c3 = 0.3): at this lower value, the new stability persists over time

Model A incorporated prey refuge availability and a predation-based Allee effect, while model B
omitted these factors for comparison. Through mathematical analysis and simulation, key findings
emerged regarding local and global stability properties at equilibrium states under different scenarios.

Our stability assessments revealed that model A shows a higher tendency toward extinction when
the Allee effect is strong enough.

Bifurcation analyses revealed qualitative behavioral shifts triggered by parametric variations
such as predator death rates or prey growth rates. Model A experienced a transcritical bifurcation that
showed critical population threshold responses. Model B manifested additional bifurcation types in the
absence of refuge and Allee stabilizing impacts.

Notably, disease burden and population persistence were positively influenced by refuge habitat
which curbed predator – prey interactions. The Allee effect also calibrated stability through increased
sensitivity to small population sizes. Our formulation successfully captured the complexity arising from
disease transmission interacting with predation and density dependence.
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Figure 9. Comparison of solution behaviors and phase portraits for the eco-epidemiological model with and
without an Allee effect and susceptible prey refuge. (a, b): model B; (c, d): model A with Allee effect (a1 = 3.8)
and refuge (n = 0.5)

The inclusion of real-world examples further supports the relevance and applicability of our
models. For instance, African wild dog (Lycaon pictus) populations exemplify the Allee effect, where
small group sizes lead to decreased hunting efficiency and lower survival rates [Courchamp, Clutton-
Brock, Grenfell, 2000]. Similarly, Huffaker’s mite experiments demonstrate how prey refuge habitats
stabilize predator – prey dynamics [Hupfaker, 1958]. The crowding effect of infected prey is evident in
avian populations affected by avian influenza (H5N1), where high densities in poultry and wild bird
populations facilitate rapid disease transmission and population decline [Kilpatrick et al., 2006].

In summary, objectives to evaluate stability contributions from prey refuge and Allee effect
terms, and compare system responses between models with and without these factors, were achieved.
Insights gained regarding ecological tipping points enhance the understanding of managing wildlife
disease spread under changing environmental conditions.

Other findings: The Allee effect can influence the stability of equilibria and potentially lead to
extinction or bi-stability (two stable equilibria) depending on parameter values. The analysis identified
critical thresholds for parameter values that trigger qualitative changes in the system’s behavior,
highlighting potential tipping points in real-world ecosystems. Model A experienced transcritical
bifurcation around E1 where E0 and E1 collided and exchanged stability for certain parameter values,
indicating critical transitions in system behavior influenced by the death rate of the predator and the
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growth rate of the susceptible prey. Model B also exhibited bifurcation phenomena, a transcritical
bifurcation occurring due to the collision of E1 and E3 and a Hopf bifurcation around E3 for certain
parametric values. The absence of the Hopf bifurcation in model A shows the importance of prey
refuge and Allee effect in stabilizing the eco-epidemiological system and avoiding ecological disasters.
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