
COMPUTER RESEARCH AND MODELING
2025 VOL. 17 NO. 1 P. 45–58
DOI: 10.20537/2076-7633-2025-17-1-45-58

NUMERICAL METHODS AND THE BASIS FOR THEIR APPLICATION

UDC: 519.161

Solving traveling salesman problem via clustering
and a new algorithm for merging tours

N. I. Shushkoa, E. B. Barashovb, S. A. Krasotkinc, D.V. Lemtuzhnikovad

V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences,
65 Profsoyuznaya st., Moscow, 117997, Russia

E-mail: a shushko.ni@phystech.edu, b barashov.eb17@physics.msu.ru, c krasotkin.sa@phystech.edu,
d darabbt@gmail.com

Received 28.10.2024.
Accepted for publication 28.12.2024.

Traditional methods for solving the traveling salesman problem are not effective for high-dimensional
problems due to their high computational complexity. One of the most effective ways to solve this problem is
the decomposition approach, which includes three main stages: clustering vertices, solving subproblems within
each cluster and then merging the obtained solutions into a final solution. This article focuses on the third
stage — merging cycles of solving subproblems — since this stage is not always given sufficient attention,
which leads to less accurate final solutions of the problem. The paper proposes a new modified Sigal algorithm
for merging cycles. To evaluate its effectiveness, it is compared with two algorithms for merging cycles —
the method of connecting midpoints of edges and an algorithm based on closeness of cluster centroids. The
dependence of quality of solving subproblems on algorithms used for merging cycles is investigated. Sigal’s
modified algorithm performs pairwise clustering and minimizes total distance. The centroid method focuses on
connecting clusters based on closeness of centroids, and an algorithm using mid-points estimates the distance
between mid-points of edges. Two types of clustering — k-means and affinity propagation — were also considered.
Numerical experiments were performed using the TSPLIB dataset with different numbers of cities and topologies
to test effectiveness of proposed algorithm. The study analyzes errors caused by the order in which clusters
were merged, the quality of solving subtasks and number of clusters. Experiments show that the modified
Sigal algorithm has the smallest median final distance and the most stable results compared to other methods.
Results indicate that the quality of the final solution obtained using the modified Sigal algorithm is more stable
depending on the sequence of merging clusters. Improving the quality of solving subproblems usually results in
linear improvement of the final solution, but the pooling algorithm rarely affects the degree of this improvement.

Keywords: traveling salesman problem, cycle merging, k-means, affinity propagation,
decomposition

Citation: Computer Research and Modeling, 2025, vol. 17, no. 1, pp. 45–58.

The research was supported by RSF project No. 22-71-10131 (https://rscf.ru/project/22-71-10131/).

© 2025 Nikita I. Shushko, Egor B. Barashov, Semen A. Krasotkin, Daria M. Lemtuzhnikova
This work is licensed under the Creative Commons Attribution-NoDerivs 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/
or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ
И МОДЕЛИРОВАНИЕ 2025 Т. 17 № 1 С. 45–58
DOI: 10.20537/2076-7633-2025-17-1-45-58

ЧИСЛЕННЫЕ МЕТОДЫ И ОСНОВЫ ИХ РЕАЛИЗАЦИИ

УДК: 519.161

Новый алгоритм объединения решений подзадач
в задаче коммивояжера

Н.И. Шушкоa, Е. Б. Барашовb, С.А. Красоткинc, Д. В. Лемтюжниковаd

Институт проблем управления им. В. А. Трапезникова Российской академии наук,
Россия, 117997, г. Москва, ул. Профсоюзная, 65

E-mail: a shushko.ni@phystech.edu, b barashov.eb17@physics.msu.ru, c krasotkin.sa@phystech.edu,
d darabbt@gmail.com

Получено 28.10.2024.
Принято к публикации 28.12.2024.

Традиционные методы решения задачи коммивояжера не являются эффективными для задач высо-
кой размерности из-за их высокой вычислительной сложности. Одним из эффективных способов решения
этой проблемы является декомпозиционный подход, который включает в себя три основных этапа: кла-
стеризацию вершин, решение подзадач внутри каждого кластера и последующее объединение получен-
ных решений в итоговое. В данной статье основное внимание уделяется третьему этапу — объединению
циклов решений подзадач, поскольку этому этапу не всегда уделяется должное внимание, что приводит
к менее точному итоговому решению. В статье предлагается новый модифицированный алгоритм Сига-
ла для объединения циклов. Для оценки его эффективности проводится сравнение с двумя алгоритмами
объединения циклов: метод соединения средних точек ребер и алгоритм на основе близости центрои-
дов кластеров. Исследуется зависимость качества решения подзадач на алгоритмы объединения циклов.
Модифицированный алгоритм Сигала выполняет попарное объединение кластеров, минимизируя коли-
чество пересечений и общее расстояние. Метод центроидов ориентирован на соединение кластеров на
основе близости центроидов, а алгоритм с использованием средних точек оценивает расстояние между
средними точками ребер. Также были рассмотрены два типа кластеризации: алгоритмы k-means и affinity
propagation. Для проверки эффективности предложенного алгоритма были проведены численные экспе-
рименты на наборе данных TSPLIB с различным количеством городов. В исследовании анализируются
ошибки, вызванные порядком объединения кластеров, качеством решения подзадач и количеством кла-
стеров. Эксперименты показали, что модифицированный алгоритм Сигала демонстрирует наименьшую
медиану итогового расстояния и наиболее устойчивые результаты по сравнению с другими методами.
Результаты указывают на большую устойчивость качества конечного решения, полученным модифициро-
ванным алгоритмом Сигала, от последовательности объединения кластеров. Повышение качества реше-
ния подзадачи обычно приводит к линейному улучшению конечного решения, но используемый алгоритм
объединения редко влияет на степень этого улучшения.

Ключевые слова: задача коммивояжера, объединение циклов, метод k-средних, метод рас-
пространения близости, декомпозиция

Исследование выполнено за счет гранта Российского научного фонда № 22-71-10131 (https://rscf.ru/project/22-71-
10131/).

© 2025 Никита Игоревич Шушко, Егор Борисович Барашов, Семен Александрович Красоткин, Дарьяна Владимировна
Лемтюжникова

Статья доступна по лицензии Creative Commons Attribution-NoDerivs 3.0 Unported License.
Чтобы получить текст лицензии, посетите веб-сайт http://creativecommons.org/licenses/by-nd/3.0/

или отправьте письмо в Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Solving traveling salesman problem via clustering and a new . . . 47

Introduction

The Traveling Salesman Problem (TSP) is one of the most renowned problems in discrete
optimization, involving finding the shortest path that visits each specified city or vertex exactly once
and returns to the origin, forming a closed loop. Data about the distances between vertices can be
represented in two main ways: via a distance matrix or by coordinates on a plane. This paper uses the
latter method, referring to the problem as the Euclidean TSP (ETSP).

In general, the problem is NP-hard [Deineko, Klinz, Wang, 2022], as is its variant, the ETSP
[Antoniadis et al., 2020], and neither has a polynomial-time algorithm.

TSP is utilized in various fields, including logistics, transportation planning, and network routing
to optimize data transmission paths between network nodes, as well as in the optimal control of
drones [Spyridis, Gkelias, Argyriou, 2023; Schaumann et al., 2024].

In solving real-world problems, the number of vertices can be so large that employing algorithms
for exact solutions is impractical. In such cases, a decomposition approach may be employed, involving:

1. Clustering: identifying subproblems of smaller dimensions;

2. Solving: solving each subproblem by finding a cycle within a cluster;

3. Merging: forming the final solution by merging the solutions of the subproblems.

This approach is widely discussed in the literature: [Anaya Fuentes et al., 2018; Romanuke, 2023;
Jaradat, Diabat, 2019]. Most papers propose new methods for breaking down a problem into smaller
subproblems and provide algorithms for solving each subproblem. However, algorithms for merging the
solutions to these subproblems are often neglected. In our work, we propose a new merging algorithm
based on the pairwise merging of clusters and compare it with others. This algorithm allows one to
achieve more stable and accurate results.

The main aim of our work is to analyze the errors associated with this approach, evaluating the
impact of errors at each stage on the overall solution error. The use of clustering restricts the solution
space of TSP, as transitions between clusters are limited. Whether the optimal solution falls within this
restricted area cannot be determined during the clustering phase. Therefore, the study examines errors
in the second and third stages and their interrelations.

Literature review

Clustering and Subproblem Solving Algorithms

There are numerous methods for decomposing the Traveling Salesman Problem into
subproblems. [Sigal, 1988] discusses the division of a set of points into non-overlapping subsets using
partition quality functions. This is multi-step approach which includes adjustment procedures, and is
labor-intensive.

The method for hierarchical clustering based on the construction of dendrograms is proposed
in [Tsai, Chiu, 2006]. The quality of the clusters obtained can be inconsistent.

Liao et al. [Liao, Liu, 2018] propose a decomposition of the general problem into subproblems
using the Density Peaks Clustering algorithm. The algorithm assumes that cluster centers are
surrounded by neighbors with lower local density and focuses on identifying centers with higher local
density.

The k-means algorithm, one of the most prevalent machine learning algorithms, is extensively
utilized as outlined in [Anaya Fuentes et al., 2018; Romanuke, 2023; Jaradat, Diabat, 2019]. This
algorithm efficiently tackles the task of dividing a set of points into k subsets. A key limitation is

2025, Т. 17, № 1, С. 45–58

48 N. I. Shushko, E. B.Barashov, S.A. Krasotkin, D. V. Lemtuzhnikova

the necessity to pre-specify the number of clusters. [Jahwar, Abdulazeez, 2020] provides a review of
various k-means variations.

The affinity propagation clustering algorithm, used for dividing problems into subproblems as
discussed in [Ashour, Muqat, Al-Talli, 2018; El-Samak, Ashour, 2015], differs from k-means in that it
does not require specifying the number of clusters upfront.

A multitude of heuristic algorithms are available for solving subproblems. Recent popular ones
include genetic algorithms [El-Samak, Ashour, 2015; Romanuke, 2023], ant colony algorithms [Liao,
Liu, 2018], local search algorithms [Anaya Fuentes et al., 2018], and the firefly algorithm [Jaradat,
Diabat, 2019]. The use of various algorithms at the subproblem solving stage is a primary means of
investigating and enhancing the efficiency of the decomposition approach.

Combining algorithms

The least attention is paid to algorithms for combining solutions to subproblems. All algorithms
are heuristic. One of the criteria for the optimality of combining algorithms is the absence of self-
intersection of the final solution cycle [Quintas, Supnick, 1965].

In the work [Liao, Liu, 2018], a hierarchical structure of the initial problem points is built. At
the top level, clusters are considered as vertices, and the traveling salesman problem is solved. The
result is a scheme for combining clusters. Two neighboring clusters are combined by finding the nearest
vertices.

In the work [Anaya Fuentes et al., 2018], the algorithm for creating the union is based on both the
distance between cluster centroids and the distance between classes. This algorithm will be discussed
in more detail in the following sections.

In [Jaradat, Diabat, 2019; Sigal, 1988], algorithms for pairwise clustering were proposed. This
approach has the advantage of ensuring at each stage of the solution that the solution forms a cycle.
Additionally, this approach can detect the absence of new edge intersections in the cycle at each step
of the algorithm.

In this paper, we propose a modification to the algorithm for combining the solutions of
subproblems in a pairwise manner.

Problem Description and Algorithms

We consider the Euclidean Traveling Salesman Problem. Given coordinates (xi, yi) for N cities
on a plane, the objective is to construct a tour that visits each city exactly once. The problem will be
solved in three stages as follows. First, we partition the original set of cities into a certain number of
clusters.

Next, we solve the TSP for each individual cluster using an open-source solver, obtaining
a partial solution for each cluster. After that, we need to merge the clusters, with the goal of combining
the partial solutions from each cluster into a solution for the original TSP. Two strategies for selecting
clusters for merging have been formulated, with detailed descriptions provided in subparagraphs
“Strategy 1: Sequential Merging with Newly Formed Cluster” and “Strategy 2: Merging Closest
Clusters”.

Based on the chosen strategy, we select a pair of clusters to merge. The merging process is carried
out using specific algorithms, which are described below. This procedure of selecting two clusters and
merging them is repeated until only one cluster remains, which constitutes the solution to the original
TSP problem.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Solving traveling salesman problem via clustering and a new . . . 49

Clustering

Clustering is a key step in solving the TSP as it reduces the problem size and enhances the
efficiency of routing algorithms. We explore two clustering methods: k-means and affinity propagation.

The k-means algorithm includes:

1. Random initialization of k centroids.

2. Assignment of each city to the nearest centroid.

3. Update of centroids based on the mean of the assigned cities’ coordinates.

4. Iteration until centroids stabilize.

For a set of cities {1, 2, . . . , n} and k centroids {µ1, µ2, . . . , µk}, the algorithm minimizes the
following function:

J =
n∑

i=1

k∑

j=1

ri j‖xi − µ j‖2, (1)

where ri j = 1 if the city with coordinates xi belongs to cluster j with coordinates µ j, and 0 otherwise.
Affinity propagation does not require a predefined number of clusters. It uses message passing

between cities to form clusters, where each city can be a potential cluster center (exemplar).
The algorithm works as follows:

1. Initialization of the similarity matrix S , where S (i, k) indicates the similarity between city i and
city k. A higher value of S (i, k) implies that city i is more likely to choose city k as its exemplar.

2. Exchange of two types of messages between cities: responsibility r(i, k) and availability a(i, k).

3. Iterative update of responsibility and availability values until convergence.

The responsibility r(i, k) quantifies how well-suited city k is to serve as the exemplar for city i
(relative to other candidate exemplars for city i). It is updated using the following formula:

r(i, k)← S (i, k) −max
k′�k

a(i, k′) + S (i, k′), (2)

where S (i, k) is the similarity between cities i and k, a(i, k′) is the availability of city k′ to be the
exemplar for city i. The availability a(i, k) represents how appropriate it is for city i to choose city k as
its exemplar, taking into account other cities’ preferences. For cities that are not their own exemplars
(i � k), the availability is updated as follows:

a(i, k)← min

⎛⎜⎜⎜⎜⎜⎜⎝0, r(k, k) +
∑

i′�i,k
max(0, r(i′, k))

⎞⎟⎟⎟⎟⎟⎟⎠ for i � k, (3)

where r(k, k) is the self-responsibility of city k,
∑

i′�i,k
max(0, r(i′, k)) is the sum of the positive

responsibilities of other cities for city k. For cities that consider themselves as their exemplars (i = k),
the availability is updated as:

a(k, k)←
∑

i′�k

max(0, r(i′, k)), (4)

which accumulates the positive responsibilities of all other cities i′ for city k.
By iteratively updating these messages, the algorithm eventually converges, and each city is

assigned to the exemplar that maximizes the combined responsibility and availability.
The specific clustering method is not critical to our main goal, which is to analyze cluster

merging algorithms post-clustering. Both k-means and affinity propagation are effective for clustering
cities in the TSP, providing suitable results for further analysis.

2025, Т. 17, № 1, С. 45–58

50 N. I. Shushko, E. B.Barashov, S.A. Krasotkin, D. V. Lemtuzhnikova

Strategy 1: Sequential Merging with Newly Formed Cluster

The first strategy involves sequentially merging clusters with the newly formed cluster. The main
steps are:

1. Find the Closest Clusters: Identify the two nearest clusters based on the distance between their
centroids:

Ca, Cb = arg min
Ci,C j∈{C1,C2, ...,Ck}, i� j

d(centroid(Ci), centroid(C j)), (5)

where d(centroid(Ci), centroid(C j)) is the distance between the centroids of clusters Ci and C j.

2. Merge Clusters: Merge clusters Ca and Cb and recalculate the centroid of the newly formed
cluster Cnew:

centroid(Cnew) =
1

|Ca| + |Cb|
∑

i∈Ca ∪Cb

i, (6)

where |Ca| and |Cb| are the numbers of vertices in clusters Ca and Cb, respectively.

3. Find and Merge with the Next Nearest Cluster: Identify the nearest cluster to Cnew and merge
it:

Cnext = arg min
Ci∈{C1,C2 , ...,Ck}\{Cnew}

d(centroid(Cnew), centroid(Ci)). (7)

4. Repeat the Process: Continue merging the newly formed cluster with the nearest cluster until
only one cluster remains.

This strategy ensures sequential expansion by progressively merging the nearest clusters.

Strategy 2: Merging Closest Clusters

The second strategy involves merging the two closest clusters regardless of their location. The
steps are:

1. Find the Closest Clusters: Identify the two nearest clusters:

Ca, Cb = arg min
Ci,C j∈{C1,C2, ...,Ck}, i� j

d(centroid(Ci), centroid(C j)). (8)

2. Merge Clusters: Merge clusters Ca and Cb and recalculate the centroid of the newly formed
cluster Cnew:

centroid(Cnew) =
1

|Ca| + |Cb|
∑

i∈Ca ∪Cb

i. (9)

3. Find and Merge the Next Closest Clusters: Identify the next pair of closest clusters, considering
the recalculated centroids:

Cx, Cy = arg min
Ci,C j∈{C1,C2, ...,Ck}\{Cnew}, i� j

d(centroid(Ci), centroid(C j)). (10)

4. Repeat the Process: Continue merging the two closest clusters until only one cluster remains.

This strategy allows merging to occur in different areas, potentially facilitating parallel operations
across different regions.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Solving traveling salesman problem via clustering and a new . . . 51

Solving TSP within Clusters

After clustering, the original TSP is decomposed into multiple smaller TSPs within each cluster.
We solve each of these subproblems separately using Google’s “or-tools” library. The computational
effort for solving each subproblem is controlled via parameters such as maximum search time or the
number of heuristic iterations.

Since each cluster contains significantly fewer cities than the original problem, solving the TSP
for each cluster individually is computationally less intensive. This approach allows us to find solutions
that are closer to optimal for each cluster compared to attempting to solve the entire problem at once.
Smaller problem sizes reduce the solution space, enabling the solver to explore possibilities more
thoroughly within a reasonable time frame. Once we have obtained the routes for each cluster, we
proceed to merge them into a single, unified tour. The merging process is guided by specific algorithms
designed to combine the partial solutions effectively.

Merging Clusters

At this stage, we have already partitioned the original TSP problem into clusters and obtained
a solution for each individual cluster. The next step is to merge these cluster-level solutions into a single,
unified tour that solves the original TSP. The key challenge at this point is determining the order in
which the clusters should be merged, as the merging procedure works on two clusters at a time.

To address this, we propose two distinct strategies for selecting which clusters to merge at each
step. These strategies guide the merging process, and their application can lead to different results,
particularly when dealing with four or more clusters. Detailed descriptions of these strategies can be
found in subparagraphs “Strategy 1: Sequential Merging with Newly Formed Cluster” and “Strategy 2:
Merging Closest Clusters”.

The first strategy selects the nearest cluster to the newly formed cluster from the previous
merging step. In this approach, we progressively expand the solution outward from a single starting
point, as each newly merged cluster is joined with its closest neighbor. This method allows for a more
localized growth of the solution, potentially reducing the overall distance traveled as the tour expands
incrementally from a central area.

The second strategy, on the other hand, simply selects the two clusters that are closest to each
other at each step, regardless of whether they were part of a previous merge or not. This results in
a more distributed merging process, where clusters from different regions are combined at different
stages. The solution in this case is constructed by connecting the closest clusters across the entire
problem space, leading to a more global approach.

As a result, the first strategy can be seen as gradually expanding the solution from one area,
while the second strategy simultaneously incorporates various regions. These differing approaches lead
to variations in the accuracy of the final solution, which will be evident in the results section.

We compare three different cluster merging procedures, one of which is our own modification
based on Sigal’s algorithm. This modification was developed to address the lack of detailed merging
procedures in the original work, improving its applicability to our problem.

Modified Sigal’s Algorithm

This algorithm iteratively merges clusters by selecting edges for removal and reconnecting
clusters without introducing crossing edges. The merging process continues until all clusters are
combined into a single cycle.

Given k cycles C1, C2, . . . , Ck, the algorithm repeatedly selects two neighboring clusters to
merge. For two cycles Cp and Cq, where:

Cp =
(
ip
1 , . . . , ip

rp

)
, Cq =

(
iq1, . . . , iqrq

)
, (11)

2025, Т. 17, № 1, С. 45–58

52 N. I. Shushko, E. B.Barashov, S.A. Krasotkin, D. V. Lemtuzhnikova

we aim to merge them by identifying the best pair of edges from each cycle to replace. Specifically, we
select edges

(
ip
s , ip

s+1

)
from cycle Cp and

(
iqt , iqt+1

)
from cycle Cq. The goal is to minimize the following

expression:

min
(
d
(
iqt , ip

s

)
+ d
(
iqt+1, ip

s+1

)
− d
(
iqt , iqt+1

)
− d
(
ip
s , ip

s+1

))
, (12)

where d(i, j) is the distance between cities i and j.

Once the optimal edges are found, the edges
(
ip
s , ip

s+1

)
and
(
iqt , iqt+1

)
are removed from the

respective cycles, and new edges
(
ip
s , iqt
)
and
(
ip
s+1, iqt+1

)
are added, effectively merging the two cycles

into a new cycle C′p.

This process of merging two cycles is repeated until all clusters are combined into one final
cycle:

Cfinal = C′1 ∪ . . . ∪C′k, (13)

where Cfinal represents the final solution, encompassing all cities from the original problem.

The complexity of this algorithm is O
(
k ·
(

n
k

)2)
= O
(

n2

k

)
where n is the number of cities and k is

the number of clusters, since we have to perform the merging procedure with k clusters, each step
reducing their number by one and at the same time to search all pairs of edges from different clusters,
and they are on average n

k .

Mid-edge merging algorithm

This algorithm merges clusters by finding the shortest distance between the midpoints of edges
from different clusters. Instead of directly comparing city-to-city distances, it considers the midpoints
of edges to guide the merging process.

Given two cycles Cp and Cq, we first calculate the midpoints of each edge:

mp
s =

ip
s + ip

s+1

2
, mq

t =
iqt + iqt+1

2
, (14)

where mp
s is the midpoint of the edge

(
ip
s , ip

s+1

)
in cycle Cp and mq

t is the midpoint of the edge
(
iqt , iqt+1

)

in cycle Cq.

The algorithm identifies the pair of edges (one from each cluster) whose midpoints are closest
by minimizing the distance between midpoints:

min d
(
mp

s , mq
t

)
, (15)

where d
(
mp

s , mq
t

)
is the distance between the midpoints.

Once the nearest midpoints are found, the corresponding edges
(
ip
s , ip

s+1

)
and
(
iqt , iqt+1

)
are

removed, and new edges
(
ip
s , iqt
)
and
(
ip
s+1, iqt+1

)
are added. This effectively merges the two clusters

into a new cycle.

The process is repeated until all clusters are merged into a single cycle, representing the final
solution.

The complexity of this algorithm is the same as that of the modified Sigal algorithm.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Solving traveling salesman problem via clustering and a new . . . 53

Centroid-Based Merging Algorithm

This algorithm focuses on merging clusters based on the distances between their centroids and the
nearest cities within each cluster. A centroid represents the geometric center of a cluster and provides
a way to approximate the cluster’s location on the plane.

To merge clusters, the algorithm first computes the centroid of each cluster. For a cluster Ci, its
centroid is calculated as:

centroid(Ci) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ri∑
j=1

x j

ri

,

ri∑
j=1

y j

ri

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where ri is the number of cities in cluster Ci, and (x j, y j) are the coordinates of city j in the cluster.

The algorithm begins by selecting the first cluster, C1, and finding the nearest neighboring
cluster, Cc, based on the distance between their centroids:

Cc = arg min d(centroid(C1), centroid(Ci)), (16)

where i ∈ {2, . . . , k} and d(·, ·) represents the distance between centroids.
Once the nearest cluster Cc is identified, the algorithm finds the nearest pair of cities between

clusters C1 and Cc, denoted as nodeC1 (from C1) and nodeC2 (from Cc). These cities are then
connected by a new edge, and the clusters are merged by adjusting the edges between them to form
a new combined cycle.

The process is repeated with the newly formed cluster, which continues to grow by merging with
the nearest remaining cluster until only one cycle remains, encompassing all cities.

The complexity of this algorithm is O
(
n + n2

k

)
since we also need to compute the centroids of

the clusters.

Numerical Experiments

The following instances from the TSPLIB dataset were selected for the numerical experiments:
berlin52.tsp, bier127.tsp, ch130.tsp, ch150.tsp, eil51.tsp, eil76.tsp, eil101.tsp, pr76.tsp, pr144.tsp,
pr439.tsp, and rat575.tsp. They vary in the number of vertices, indicated by their names, density,
topology, and complexity of finding optimal solutions. Some instances, such as those starting with
“ch”, are based on real-world geographical maps.

The following numerical experiments were conducted to test the effectiveness of cycle merging
algorithms:

1. Clustering instances using either k-means or affinity propagation. For k-means, the number of
clusters is manually set and ranges from 4 to 10. For affinity propagation, the algorithm itself
determines the required number of clusters.

2. Solving the traveling salesman problem for each cluster using OR-Tools, with time limits set
to 1 second and 10 seconds.

3. Merging cycles of solutions from the clustered traveling salesman problems using three different
merging algorithms. Strategies 1 and 2 are employed to select the next cluster for merging, and
various initial clusters are considered for centroid connections.

2025, Т. 17, № 1, С. 45–58

54 N. I. Shushko, E. B.Barashov, S.A. Krasotkin, D. V. Lemtuzhnikova

Comparison of Combining Algorithms

Three different methods of combining cycles were compared: connection_centroids (connecting
two clusters via the nearest centroids); connection_midpoints (connecting two clusters at the nearest
midpoints on their edges); connection_sigal (connecting two clusters according to the modified Sigal
method).

For all the different combinations of clustering methods, merging strategies, and the number of
clusters, we constructed boxplots to showcase the final relative distances for each merging technique,
as depicted in Fig. 1.

Relative Distance =
Total Distance

Accumulated Distance
, (17)

where the Accumulated Distance is the sum of the solutions for all clusters.

Figure 1. Variation in solution lengths depending on the merging method employed

Investigation of the Impact of Cluster Solution Connection Order

This study explores how the final solution is influenced by the order of cluster connections. For
the connection_centroids algorithm, the sequence is determined starting with the selection of the first
cluster to merge. For other algorithms, either the first or second strategy is employed to identify the
next pair of clusters to merge.

Figure 2 illustrates the distribution of relative solution lengths based on the merging algorithm
and the order of connection.

To assess how the solution quality during the subproblem solving step affects outcomes, a similar
distribution is plotted for solutions with a time limit of 10 seconds, as shown in Fig. 3.

Comparison of Solution Effectiveness Based on the Number of Clusters

This experiment investigates the relationship between merging techniques and the number of
clusters used in k-means clustering. We examine how the cycle length, necessary to solve the problem,
varies with the number of clusters into which the original set of vertices is divided. This analysis
includes each merging method employed.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Solving traveling salesman problem via clustering and a new . . . 55

Figure 2. The relative length of the solutions depends on the merging method and the cluster connection order
strategy (Time Limit = 1)

Figure 3. The relative length of the solutions depends on the merging method and the cluster connection order
strategy (Time Limit = 10)

Comparison of the Impact of Сycle Construction Errors on Merging Results

This section presents an investigation into how the quality of solutions for subproblems affects
the performance of cycle merging algorithms.

We measured the relative change in the total length of the solutions for the cycles and the
variation in the relative length of the final solution upon modifying the Time Limit parameter. The
results are depicted in Fig. 5, illustrating the dependence for each merging algorithm.

2025, Т. 17, № 1, С. 45–58

56 N. I. Shushko, E. B.Barashov, S.A. Krasotkin, D. V. Lemtuzhnikova

Figure 4. The relationship between the cycle length and the number of clusters, which illustrates how
segmentation affects solution paths across different merging techniques

Figure 5. Impact of variations in time limits on the relative changes in the lengths of subproblem solutions and
their influence on the overall merging outcome at the pr439 dataset

Conclusion

In this paper, we have investigated a decomposition approach to solving the real-world ETSP.
This approach involves dividing the problem into smaller subproblems, solving them independently,
and then merging the solutions to obtain an optimal solution for the original problem. We have proposed
a new algorithm for merging the subsolutions based on the Sigal algorithm. An experiment comparing
different merging algorithms showed that:

• the modified Sigal merging algorithm has the lowest median of the final distance and a moderate
range of values;

• the median value of the connection centroids is higher than that of other methods, and the range
of values for the final distance is also wide;

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Solving traveling salesman problem via clustering and a new . . . 57

• the connection midpoints produce a result that lies between the two methods and a range of
relative final distance values that can be considered moderate.

The same results were obtained from the algorithms with different numbers of clusters in the
experiments.

Based on the results, it can be concluded that the modified Sigal merging algorithm has an
overall advantage over other methods of merging that were considered.

Experiments demonstrated that all algorithms are dependent on the order in which the union is
performed. However, as the accuracy of the subproblem solution improves, the difference between the
solutions obtained from different orders becomes less significant.

The connection between the error and the stage of solving subproblems in the process of
combining solutions has also been investigated in experiments. Improving the quality of a subproblem
solution usually leads to a linear improvement in the final solution. The degree of this improvement is
rarely influenced by the merging algorithm used.

The results obtained will allow a further in-depth study of the decomposition approach to solving
the TSP problem and will lead to its improvement.

References

Anaya Fuentes G. E., Hernández Gress E. S., Seck Tuoh Mora J. C., Medina Marı́n J. Solution
to travelling salesman problem by clusters and a modified multi-restart iterated local search
metaheuristic // PloS one. — 2018. — Vol. 13, No. 8. — P. e0201868.

Antoniadis A., Fleszar K., Hoeksma R., Schewior K. A PTAS for Euclidean TSP with hyperplane
neighborhoods // ACM Transactions on Algorithms (TALG). — 2020. — Vol. 16, No. 3. — P. 1–16.

Ashour W., Muqat R., Al-Talli H. Optimization of Traveling Salesman Problem based on Adaptive
Affinity Propagation and Ant Colony Algorithms // Int. J. Comput. Appl. — 2018. — Vol. 181. —
P. 25–31.

Deineko V., Klinz B., Wang M. 2-Period Balanced Travelling Salesman Problem: a polynomially
solvable case and heuristics // arXiv preprint. — 2022. — arXiv:2203.06090

El-Samak A. F., Ashour W. Optimization of traveling salesman problem using affinity propagation
clustering and genetic algorithm // Journal of Artificial Intelligence and Soft Computing
Research. — 2015. — Vol. 5, No. 4. — P. 239–245.

Jahwar A. F., Abdulazeez A. M. Meta-heuristic algorithms for K-means clustering: A review //
PalArch’s Journal of Archaeology of Egypt/Egyptology. — 2020. — Vol. 17, No. 7. —
P. 12002–12020.

Jaradat A., Diabat W. Solving traveling salesman problem using firefly algorithm and k-means
clustering / 2019 IEEE Jordan International Joint Conference on Electrical Engineering and
Information Technology (JEEIT). — IEEE, 2019. — P. 586–589.

Liao E., Liu C. A hierarchical algorithm based on density peaks clustering and ant colony optimization
for traveling salesman problem // IEEE Access. — 2018. — Vol. 6. — P. 38921–38933.

Quintas L. V., Supnick F. On some properties of shortest Hamiltonian circuits // The American
Mathematical Monthly. — 1965. — Vol. 72, No. 9. — P. 977–980.

Romanuke V. Traveling salesman problem parallelization by solving clustered subproblems //
Foundations of Computing and Decision Sciences. — 2023. — Vol. 48, No. 4. — P. 453–481.

Schaumann S. K., Kundu A., Pina-Pardo J. C., Winkenbach M., Gatica R. A., Wagner S. M., Matis T. I.
The flying sidekick traveling salesman problem with multiple drops: A simple and effective
heuristic approach // arXiv preprint. — 2024. — arXiv:2403.18091

2025, Т. 17, № 1, С. 45–58

58 N. I. Shushko, E. B.Barashov, S.A. Krasotkin, D. V. Lemtuzhnikova

Sigal I. K. An algorithm for the approximate solution of a large-scale travelling salesman problem
in a plane // USSR Computational Mathematics and Mathematical Physics. — 1988. — Vol. 28,
No. 4. — P. 205–208.

Spyridis Y., Gkelias A., Argyriou V. Variational quantum approach for the multiple traveling salesman
problem optimisation / 2023 19th International Conference on Distributed Computing in Smart
Systems and the Internet of Things (DCOSS-IoT). — IEEE, 2023. — P. 354–358.

Tsai C. Y., Chiu C. C. A VNS based hierarchical clustering method / International Conference on
Computational Intelligence. — 2006.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /RUS ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (Coated FOGRA27 \(ISO 12647-2:2004\))
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [595.276 841.890]
>> setpagedevice

