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Scheduling computational workflows represented by directed acyclic graphs (DAGs) is crucial in many areas of
computer science, such as cloud/edge tasks with distributed workloads and data mining. The complexity of online DAG
scheduling is compounded by the large number of computational nodes, data transfer delays, heterogeneity (by type and
processing power) of executors, precedence constraints imposed by DAG, and the nonuniform arrival of tasks. This paper
introduces the Multi-Agent Local Voting Protocol (MLVP), a novel approach focused on dynamic load balancing for DAG
scheduling in heterogeneous computing environments, where executors are represented as agents. The MLVP employs a local
voting protocol to achieve effective load distribution by formulating the problem as a differentiated consensus achievement.
The algorithm calculates an aggregated DAG metric for each executor-node pair based on node dependencies, node
availability, and executor performance. The balance of these metrics as a weighted sum is optimized using a genetic algorithm
to assign tasks probabilistically, achieving efficient workload distribution via information sharing and reaching consensus
among the executors across the system and thus improving makespan. The effectiveness of the MLVP is demonstrated
through comparisons with the state-of-the-art DAG scheduling algorithm and popular heuristics such as DONF, FIFO, Min-
Min, and Max-Min. Numerical simulations show that MLVP achieves makepsan improvements of up to 70 % on specific
graph topologies and an average makespan reduction of 23.99 % over DONF (state-of-the-art DAG scheduling heuristic)
across randomly generated diverse set of DAGs. Notably, the algorithm’s scalability is evidenced by enhanced performance
with increasing numbers of executors and graph nodes.
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Планирование вычислительных рабочих процессов, представленных направленными ациклическими графами
(DAG), имеет ключевое значение для многих областей информатики, таких как облачные/edge задачи с распреде-
ленной рабочей нагрузкой и анализ данных. Сложность онлайнового планирования DAG усугубляется большим
количеством вычислительных узлов, задержками передачи данных, неоднородностью (по типу и вычислительной
мощности) исполнителей, ограничениями предшествования, накладываемыми DAG, и неравномерностью поступле-
ния задач. В данной статье представлен мультиагентный протокол локального голосования (MLVP) — новый подход,
ориентированный на динамическое распределение нагрузки при планировании DAG в гетерогенных вычислительных
средах, где исполнители представлены в виде агентов. MLVP использует протокол локального голосования для дости-
жения эффективного распределения нагрузки, формулируя проблему как дифференцированное достижение консенсу-
са. Алгоритм вычисляет агрегированную метрику DAG для каждой пары исполнитель – узел на основе зависимостей
между узлами, доступности узлов и производительности исполнителей. Баланс этих метрик как взвешенная сумма
оптимизируется с помощью генетического алгоритма для вероятностного распределения задач, что позволяет до-
биться эффективного распределения рабочей нагрузки за счет обмена информацией и достижения консенсуса между
исполнителями всей системы и, таким образом, улучшить время выполнения. Эффективность MLVP демонстрирует-
ся путем сравнения с современным алгоритмом планирования DAG и популярными эвристиками, такими как DONF,
FIFO, Min-Min и Max-Min. Численное моделирование показывает, что MLVP достигает улучшения makepsan до 70 %
на определенных топологиях графов и среднего сокращения makepan на 23,99 % по сравнению с DONF (современная
эвристика планирования DAG) на случайно сгенерированном разнообразном наборе DAG. Примечательно, что мас-
штабируемость алгоритма подтверждается ростом производительности при увеличении числа исполнителей и узлов
графа.

Ключевые слова: многоагентные системы, протокол локального голосования, построение
расписаний, направленный ациклический граф
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Introduction

In heterogeneous computing systems, task scheduling and resource allocation present significant
challenges. These systems integrate various types of processors, such as CPUs, GPUs, and FPGAs,
to execute tasks efficiently and optimize resource utilization. Workflows in these systems are often
modeled as directed acyclic graphs (DAGs), which clearly represent task dependencies, where nodes
denote individual tasks and edges reflect precedence and data transfer costs between tasks.

Numerous studies examine online and dynamic scheduling, often using the terms
interchangeably. Typically, papers specify the scheduling model and context, which depend on executor
parameters, especially in fog computing environments [Alizadeh et al., 2020]. Task arrival attributes,
whether random-based for non-DAG models [Alizadeh et al., 2020] or involving random arrival times
for known DAGs [Quintin, Wagner, 2012], also define this. When DAGs aren’t fully visible, schedulers
have limited visibility and cannot use heuristics like the Critical-Path method like CPOP and its
successors like HEFT [Ghose, Dey, 2022; Grandl et al., 2014].

Significant research on online and dynamic scheduling for DAG-modeled applications has been
contributed by major companies. Microsoft’s research team has focused on resource management [Mao
et al., 2016] and cluster scheduling [Grandl et al., 2014]. Cloud providers, including Microsoft [Jalaparti
et al., 2015; Yan et al., 2016], Amazon [Durillo, Prodan, 2013], Google [Soualhia, Khomh, Tahar,
2015], and IBM [Feitelson, 1994], have published findings on process optimization and scheduling.
Distributed application frameworks like Spark [Duan, Wang, Wu, 2020] and Flink [Li et al., 2020]
utilize DAGs to depict applications and employ various online scheduling methodologies.

This paper introduces the Multi-Agent Local Voting Protocol (MLVP), a novel approach to DAG
scheduling in heterogeneous computing environments. The MLVP leverages a multi-agent framework
where executors, acting as agents, use a local voting protocol to dynamically balance loads across
the system and in turn reducing makespan. The protocol calculates an aggregated DAG metric for
each task-executor pair, optimized via a genetic algorithm, to ensure efficient task assignment. This
method addresses the limitations of traditional scheduling algorithms by accommodating the dynamic
and online nature of real-world computing tasks.

The remainder of this paper is organized as follows. Section “Related works” provides an
overview of the online scheduling problem and dynamic DAG scheduling approaches. Section “Online
DAG Scheduling Problem” describes distributed heterogeneous computing system, DAG model
and performance criteria. Section “DAG Scheduling Algorithms” details the proposed MLVP-based
scheduling algorithm and its architecture. Section “Numerical simulation” evaluates the MLVP-based
scheduling algorithm performance under different workloads.

Related works

In online scheduling in general, review by [Alizadeh et al., 2020] identifies popular scheduling
algorithms: MCT, Min-Min, and Max-Min used in fog computing for task allocation based on task
size and completion times. Review by [Khallouli, Huang, 2022] assesses scheduling methods in
YARN, Borg, and Kubernetes, and advocates for “smarter” approaches, like reinforcement learning
and decision trees to refine multi-objective optimization in cloud resource allocation, addressing the
complexities of heterogeneous jobs and resources.

Online DAG scheduling often deals with incomplete knowledge of tasks and communications. To
address this, [Quintin, Wagner, 2012] introduces WSCOM, a variation of the work-stealing algorithm,
for scheduling file execution tasks. [Grandl et al., 2014] tackles online task scheduling in data-parallel
clusters that require diverse resources such as CPU, memory, disk, and network. They propose the
Tetris scheduling method, which strives to optimally assign tasks based on comprehensive resource
needs.
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The consensus approach is increasingly popular for addressing various practical issues, such
as cooperative control in multi-vehicle networks [Granichin et al., 2012; Ren, Beard, Atkins, 2007],
distributed control of robotic networks [Bullo, Cortés, Martı́nez, 2009], the flocking problem [Yu, Chen,
Cao, 2010; Virágh et al., 2013], and optimizing sensor networks [Kar, Moura, 2010]. It holds promise
for load balancing in computer, production, transport, logistics, and service networks by framing the
problem as a consensus issue among network nodes [Amelina et al., 2015]. The study in [Vergados
et al., 2018] examines optimal task redistribution in stochastic networks with variable priorities by
determining an ideal step-size for a consensus-type protocol.

Online DAG Scheduling Problem

This paper addresses the challenge of scheduling a single DAG within a distributed
heterogeneous system, specifically when executors have visibility limited to only the initial layers
of the working front. The scheduling model is composed of four distinct parts.

Directed acyclic graph G = (C, E), where C = 1, 2, 3 . . . , c is a set of nodes and E is the set
of edges, where:

• Edge (v, s) ∈ E, v, s ∈ C denotes the precedence constraint such that node j must wait until
task v finishes its execution.

• Cost of communication bv,s between nodes v and s, (v, s) ∈ E should be taken into account if
node i and s assigned to different executors, otherwise there is no cost of communication. If
node s has several parents (v, . . . , k), k ∈ O that were performed on executors other than the
executor assigned to node v, then the cost of communication is taken into account from each
parent bv,s + · · · + bk,s.

• Each node v has a type that denotes on what type of executor this node should be executed.

• Set of immediate predecessors of node i in a DAG is expressed as pred(v). A node without any
predecessor is called an entry node. Multiple entry nodes may exist in a DAG.

• Set of immediate successors of node v is expressed as succ(v). A node without any successor is
called an exit node vexit. There may be multiple exit nodes in a DAG.

Distributed heterogeneous computing system is represented by the graph D = (N, L), where:

• Graph has N = 1, 2, 3, . . . , n executors that work in parallel, L bidirectional links exist between
any two executors.

• At every moment of time t each executor performs his task or chooses a new one from the DAG
ready to perform nodes Ht = 1, 2, 3, . . . , ht, Ht ⊂ O.

• Each node i, i ∈ Ht of the DAG has Ri = 1, 2, 3, . . . , ri child nodes and each node jm, jm ∈ Ri

could have not only node i as a mother node.

• Executor m, m ∈ N chooses the new node to perform in the state xm(t). The state of executor m
is the evaluation of the probability of choosing a node Pm

i for each DAG node i, at each moment
of time.

• τmi is the execution time for executor m to process the node i.

• All executors are divided in equal shares according to the types of DAG nodes.
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• Each executor m has a type that denotes what type of tasks can be defined for this executor. In
order to assign a node i to an executor m, it is necessary that the type of node i and the type of
executor m match.

• Executor m receives a penalty wv,m for each parent node of v, that is not performed by node m.

Online sliding informational window: at each given moment the scheduler observes only ready-
to-execute nodes and their immediate successors within the informational window with length 2. This
limits the amount of information that can be utilized for scheduling and makes problem online, i. e.,
scheduler cannot utilize information about nature of task arrival. So, on the one hand, in comparison
with the static scheduling there is significantly less information, which makes it impossible to utilize
classic DAG scheduling algorithms like CPOP or HEFT, that requires full information about DAG.
On the other hand, limited information about DAG topology and parameters of not yet observed tasks
combines limitations described in various online DAG scheduling papers (see “Introduction”) and
makes the problem more difficult. If compared with purely online scheduling, there is more information
available such as dependencies and parameters of tasks inside the sliding informational window.

Performance criterion for scheduling: before presenting the final scheduling objective
function, we first define the Makespan, Earliest Start Time (EST), Earliest Finish Time (EFT) attributes.

• Makespan is the finish time of the last node in the scheduled DAG. It is defined by makespan =
= max{AFT (vexit)} where AFT (vexit) is the actual finish time (AFT) of exit node vexit. In the case
where there are multiple exit nodes, the makespan is the maximum AFT of all exit nodes.

• EST(v, m) denotes the earliest start time of node v on executor m and it is defined as

EST(v, n) = max

{
TAva(m), max

{v∈pred(v)}
{AFT(v) + bv,s}

}
.

TAva(m) is the earliest ready time of executor m.

• EFT(v, m) denotes the earliest finish time of node v on executor m and is defined as

EFT(v, m) = EST(v, m) + wv,m.

The objective function of the DAG scheduling is to determine the assignment policies of an
application’s node to heterogeneous executors so that the makespan is minimized.

Graph generation

We utilize the open-source project DAGGEN to generate random DAGs [DAGGEN, 2022]. It is
a popular tool for generating DAGs to evaluate the performance of scheduling heuristics and has been
used in studies on DONF [Lin et al., 2019], CPOP [Sih, Lee, 1993], HEFT [Topcuoglu, Hariri, Wu,
1999], and PETS [Ilavarasan, Thambidurai, 2007]. DAGGEN creates random, synthetic task graphs for
simulation purposes, with the process varying according to the configured parameters:

1. Generate the tasks according to -n, -fat, -regularity.

2. Generate the dependencies according to -density, -jump, -ccr.

3. Add transfer costs, these costs derive from the size of the data handled by the initiator of the
transfer.

Table 1 presents a description of the graph generation parameters.
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Table 1. DAG generation parameters

Parameter Description
n Number of computation nodes in the DAG (i. e., application “tasks”). Values: 3000, 6000, 12 000,

24 000.
f at Width of the DAG, the maximum number of tasks that can be executed concurrently. A small

value will lead to a thin DAG (e. g., chain) with low task parallelism, while a large value induces
a fat DAG (e. g., fork-join) with high parallelism. Values: 0.2, 0.5.

density Determines the number of dependencies between tasks of two consecutive DAG levels. Values:
0.1, 0.4, 0.8.

regularity Regularity of the distribution of tasks between the different levels of the DAG. Values: 0.2, 0.8.
jump Maximum number of levels spanned by inter-task communications. This allows generating DAGs

with execution paths of different lengths. Values: 2, 4.
ccr The ratio of the sum of edge weights to the sum of node weights. Values: 0.2, 0.8.

DAG Scheduling Algorithms

The Multi-Agent Local Voting Protocol (MLVP) algorithm is designed to optimize task
scheduling for directed acyclic graphs (DAGs) in heterogeneous computing environments. The
algorithm achieves efficient task distribution by calculating an aggregated metric for each executor-
DAG node pair and assigning probability of a given node execution on this executor. Aggregated metric
is derived from three key factors:

1. Incoming Connections: The ratio of the total incoming connections from unfinished DAG nodes
to their child nodes.

2. Available Nodes: The number of DAG nodes currently available for execution compared to nodes
of the same type.

3. Executor Performance: The performance capability of the executor in processing the task.

A genetic algorithm is employed to optimize the coefficients of these factors in a linear
combination, forming the aggregated DAG metric. This metric serves as a basis for determining the
probability of assigning a DAG node to a specific executor. By optimizing these coefficients, the
genetic algorithm ensures that the metric accurately reflects the importance of each factor, leading to
better task prioritization and scheduling efficiency.

During the Local Voting Procedure, the genetic algorithm further refines the assignment
probabilities by dynamically adjusting them to balance the workload across executors. This iterative
optimization process helps the system adapt to varying task and executor conditions, thereby reducing
makespan and enhancing overall performance.

Consensus plays a crucial role in the MLVP algorithm by coordinating task distribution among
executors. The local voting protocol (LVP) facilitates consensus by enabling executors to share their
current task assignment probabilities and states with neighboring executors. The protocol iteratively
adjusts these probabilities to ensure a balanced workload distribution, which is achieved when the
difference in task assignment states between any executor and its neighbors falls below a specified
threshold (ε), which in this case was 0.05. The algorithm’s pseudocode is provided as Algorithm 1.

Evaluation of probability for nodes

At each moment of time t the executors choose |Ht|
0.8n nodes for estimation at time moment t

randomly. Coefficient 0.8 is selected to limit the number of ready-to-execute tasks on extremely large
(24 000 nodes) and wide (with large “fat” parameter) to reduce scheduling complexity. To synchronize
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Algorithm 1. Multi-Agent Local Voting Protocol (MLVP)

1: Input: Set of executors E, Set of DAG nodes N
2: Output: Assignment probabilities for each DAG node to each executor
3: Initialize assignmentProbabilities to an empty data structure
4: for each executor e ∈ E do
5: for each node n ∈ N do
6: if n is not finished and n is ready for execution then
7: incomingConnections ← Sum of weights of all incoming edges to n
8: availableNodes ← Count of nodes ready for execution of the same type as n
9: executorPer f ormance ← Performance metric of executor e
10: aggregatedMetric ← LinearCombination(incomingConnections, availableNodes,

executorPer f ormance)
11: assignmentProbabilities[e][n] ← CalculateProbability(aggregatedMetric)
12: end if
13: end for
14: end for
15: Find coefficients for LinearCombination function based on historical data
16: for each node n ∈ N do
17: if n is ready for execution then
18: for each executor e ∈ E do
19: Tune assignmentProbabilities[e][n] using genetic algorithm to balance workload
20: end for
21: end if
22: end for
23: return assignmentProbabilities

the data of all nodes the local voting protocol (LVP) is used. The LVP is necessary to reach a consensus
on the state between the executors.

For each node i at time moment t the following values are calculated by the algorithm:

1. Ratio of the sum of all incoming connections from not finished DAG node into child’s nodes of
node i to the number of child nodes of node i:

Wt =
∑
ji∈Ri

inpt

(
ji
)

Ri
,

where Ri is the number of child nodes of i node, inpt

(
ji
)
is the number of not finished mother

nodes of ji node.

2. Sum of the ratio of DAG nodes number currently available for execution to the number of the
same as ji types:

Qi =
∑
ji∈Ri

∣∣∣Ht
∣∣∣

size
ji

(|Ht |) ,

where size
ji
(
Ht) is the number of DAG nodes ready to execute with the same type as node ji.

3. Performance of executor m is taken into account. For executor m the rate of performing the
node i is compared with executor e ∈ N which is the fastest executor for task i:

Zi = min
e∈N

(exTimee(i)) − exTimem(i),

where exTime is the time when the executor needs to finish the node i.
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4. Sum of previous elements with coefficients:

resulti = wWi + qQi + zZi.

Coefficients w, u, z were defined using the genetic algorithm [Carson, 2017] for 2 types of graph
topologies. Random population of 100 elements is created, after testing the top 10 go to the next
stage, we also take 40 crossed from the top 10, 39 crossed with additional mutations, 10 copies
of the top 10 with mutations and 1 random DNA, with the target makespan −→ min and stopping
condition if makespan improvement with previous is less than 0.1 %.

5. The probability of choosing the executor m to perform the node i is

Pm
i =

resulti∑
j∈nodesToExecute

result j

.

Local Voting Protocol

The state of executor m is the evaluation of the probability of choosing a node Pm
i for each DAG

node i, at each moment of time. The dynamics of the state of the node i has the form:

xm
t+1 = xm

t + f m
t + um

t

where f m
t is the number of new nodes of DAG that were opened for execution.

At time instant t executor m sends to the n
4 nodes its own load xt

m. We assume that to form the
control strategy each executor m has observations about its other agents state with noise and delay:

ym,c
t = x j

t−dm,c
t
+ wm,c

t , c ∈ N,

where dm,c
t is delay of transfer data, and wm,c

t is a noise.
The message exchange is undergone only once per system cycle. Applying the local voting

algorithm, we obtain a parameter characterizing the state of executor m relative to its neighbors:

um
t = γ

∑
c∈N

(
ym,c

t − xm,m
t
)

where γ > 0 is a step-size, which represents the sensitivity of the algorithm to the difference between
agents states. The consensus is achieved when the state of the last node (the node to which the message
was intended) differs from its neighbors by no more than a specified one ε-consensus.

Algorithms for comparison

In this section we consider a detailed description of the graph scheduling algorithm that we use
to compare with the proposed algorithm. The Degree-of-Node-First algorithm is selected in accordance
with the review article for graph scheduling in heterogeneous environments [Suman, Kumar, 2018;
Murad et al., 2022; Li et al., 2010; Kanani, Maniyar, Mohammad, 2015; Hayatunnufus, Riasetiawan,
Ashari, 2020]. Selection was based on the following considerations: select state-of-the-art DAG
scheduling (DONF) and online scheduling heuristics (Optimized Min-Min and Max-Min), as well
as widely used FIFO. Various Machine Learning and Reinforcement Learning-based algorithms have
been considered in the preparation of this paper, but most of the modern works either assume that the
whole graph is known in advance (as opposed to the online sliding informational window in our case),
and/or the algorithm is not designed for heterogeneous types of executors [Zhang et al., 2022; Jeon et
al., 2023; Koslovski, Pereira, Albuquerque, 2024; Roeder, Pimentel, Grelck, 2023]. While classical and
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graph heuristics are quite easy to transfer to such a setting, ML/RL based approaches usually cannot
be transferred, and require retraining/modification. The proper transfer of such models from one task
to another can be considered as a separate research task, which is beyond the scope of this article.
Another significant problem is the dimensionality of the graphs on which comparisons are made in
articles using ML/RL approaches. Usually papers, with even remotely comparable settings [Zhang et
al., 2022; Jeon et al., 2023; Koslovski, Pereira, Albuquerque, 2024; Roeder, Pimentel, Grelck, 2023]
usually consider DAGs with no more than 2000 nodes, and even less, while our approach is designed
for large-scale DAGs with more than 3000 nodes.

• Degree of Node First (DONF) algorithm [Lin et al., 2019]. It is feasible to maintain a higher
parallelism during the scheduling process in order to make full use of heterogeneous system
resources. Thus, the chosen node should have the property of enlarging parallelism as much as
possible. The Degree-of-node scheduling procedure can be shortly described as nodes with larger
out-degree should be scheduled earlier. The weighted out-degree (WOD) of node vi is defined
by:

WOD(vi) =
∑

v∈succ(s)

1
ID(s)

, (1)

where ID(s) is the in-degree of node s. Each executor in its turn selects best node by
DONF algorithm until all nodes are executed. The DONF algorithm has a computational
complexity O(v × o × p) where v is number of nodes in DAG, p is the number of executors,
and o is the maximum out-degree of any node in DAG.

• Optimized Min-Min task scheduling algorithm [Murad et al., 2022]. Min-Min does the
opposite by choosing and assigning small tasks in resources that can perform the task with
minimum execution time. The objective of the Min-Min algorithm is to ensure, firstly, that all
tasks with a minimum completion time are completed. The Min-Min has the following steps:

1. For all nodes of DAG and all executors the time of performance is calculated.

2. Each executor in its turn selects and executes the node with the lowest execution time.

The Optimized Min-Min algorithm has a computational complexity of O
(
v2
)
, where v is the

number of nodes in DAG.

• Max-Min Task scheduling Algorithm [Kanani, Maniyar, Mohammad, 2015]. The Max-Min is
quite similar with a previous algorithm, the main difference is in the node selection criterion — in
this case the executor should select the biggest node by weight. The Max-Min has the following
steps:

1. For all nodes of DAG performance weight is calculated.

2. Each executor in its turn selects and executes the node with the biggest performance weight.

The Min-Max algorithm has a computational complexity of O
(
v2
)
, where v is the number of

nodes in DAG.

• FIFO [Hayatunnufus, Riasetiawan, Ashari, 2020]. This is the default Scheduler. The tasks are
placed in a queue and the tasks are performed in their submission order. In this method, once the
job is scheduled, no intervention is allowed. The FIFO algorithm has the following steps:

1. Each node receives its place in the queue when ready for execution.

2. Each executor in its turn selects and executes the first node in the queue.
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The FIFO algorithm has a computational complexity of O(v), where v is the number of nodes
in DAG.

MLVP differs mainly in the stage of executor selection, where executors need to pass information
between each other in order to facilitate consensus and information exchange occurs only one once
per scheduling cycle. With MVLP complexity O

(
k × o × p2

)
, where k is the maximum number of

ready-to-execute nodes in DAG, o is the maximum out-degree of any node in DAG, and p is the
number of executors. We consider k in complexity estimation primarily because each executor selects
tasks (nodes) to be scheduled after consensus is reached simultaneously, i. e. MLVP processes a batch
of nodes at the same time. The worst case scenario can be considered in two aspects: if DAG is
akin to a circle, i. e., all nodes are ready to be executed from the start, that will yield complexity
of O

(
v × o × p2

)
, and if the maximum out-degree of any node is as large as v − 1 then the complexity

will become O
(
v2 × p2

)
, which is worse than the DONF worst-case scenario of O

(
v2 × p

)
. Since

coefficients selected by the genetic algorithm are fixed in the online scheduling phase, we consider
only online stage complexity. Given the size of graphs and the diversity of their topologies, finding
suitable coefficients took roughly 2 days (i. e., 48 hours) of computations combined for all DAG types.
Note that this figure is not relevant with respect to the length of time it takes to construct the schedule
in an online setting. Also, genetic algorithms in and of itself are not particularly important: makespan
in the given task is a nondifferentiable function, and any optimization approach that is suitable for this
should be sufficient.

We do not conduct evaluation in terms of concrete utilization of memory, computational power
and execution time since this is not common in the DAG scheduling problem in general (DONF [Lin
et al., 2019], CPOP/HEFT [Ghose, Dey, 2022; Grandl et al., 2014], PEFT [Arabnejad, Barbosa,
2014]) and specifically in online setting (Optimized Min-Min [Murad et al., 2022], Min-Max [Kanani,
Maniyar, Mohammad, 2015], FIFO [Hayatunnufus, Riasetiawan, Ashari, 2020]). Resource utilization
is significantly influenced by the specific implementation of the scheduling environment and specific
algorithms. Such information would not be representative of the algorithms compared in a general sense
and is not provided in the literature listed earlier, and thus is beyond the scope of the comparison.

Numerical simulation

In this section, the design of an experiment is explained and the performance of the proposed
MLVP-based algorithm is evaluated. The hardware used for computations:

• Server 1: CPU AMD 9 5950x 32 threads; GPU RTX 3080 ti; RAM 128 GB.

• Server 2: CPU AMD Ryzen Threadripper 3990X 128 threads; GPU RTX 3080 ti; RAM 192 GB.

Simulation environment

The proposed Local Voting based algorithm is tested to measure its generalization and robustness
depending on different system configurations. The working environment is determined by different
heterogeneous configurations from three to twenty four executors, 4 configurations in total. The types
of executors are evenly distributed (equally for executors of types 1, 2, and 3), and their powers were
set randomly from a range of 10 to 300 GFlops. Each workspace is intended for testing on a fixed
DAG dimension. The details of the configuration test cases are shown in Table 2.

In the simulation, the executors inside a computer node are “fully connected”: links between
different executors do not obstruct each other. Links between computer nodes also have similar
properties, however, later data transmission starts only when all the former ones finish.

For testing and training algorithms, a real-time graph traversal C++ simulation environment was
developed (see Fig. 1). The logic of the simulation is as follows: after starting the calculation, executors,
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Table 2. Description of test cases for Large-Scale DAGs

Workspace ID Total number of executors Executors of each type Dimension DAGs
1 3 1 3000
2 6 3 6000
3 12 4 12 000
4 24 8 24 000

Figure 1. An example of a C++ simulation environment

working in parallel and exchanging service data, choose a node for execution, and then work on it for
the time period, depending on node weight and executor power. After execution of a node the operation
is repeated, and so on until the moment when all nodes in the DAG are executed.

For training and evaluation of the proposed MLVP-based algorithm, a batch of random DAG
are used (described in Section “Graph generation”). At fixed dimensions there exist 48 topologies. For
training, 3 graphs are generated for each topology for training (totally 144 for each dimension 3000,
6000, 12 000, 24 000) and 10 graphs for evaluation (totally 480 for each dimension 3000, 6000, 12 000,
24 000). A total of 1920 DAGs were tested. An example of a DAG shown in Fig. 2. A comparative
analysis is presented in the section “Results”.

Figure 2. Examples of large-scale DAG
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Results

We present the comparison results between the MLVP-based algorithm and the state-of-the-art
DAG scheduling algorithms DONF, FIFO, Min-Min, Min-Max for different workspaces.

The comparison was carried out in accordance with the following metric for each tested graph:

p =
(makespanMLVP − makespanother) · 100 %

makespanother
, (2)

where makespanother is the finish time of the last node in the scheduled DAG using one of the
algorithms from the list above, makespanMLVP is the finish time of the last node in the scheduled
DAG using the MLVP-based algorithm. The obtained values are summarized and averaged for each
workspace and DAG dimension DAG. The proposed MLVP-based algorithm is tested on large-scale
DAGs and is compared to the state-of-the-art algorithms, to determine its generalization and robustness
depending on dimensions DAGs and different system configurations.

Figure 3. Percentage improvements MLVP-based approach compared to other algorithms

Figure 3 shows a comparison of the MLVP-based approach compared to DONF, FIFO, Min-Min,
Min-Max algorithms for various test cases, where X-Axis is test cases and Y-Axis is the percentage of
how much the MLVP-based exceeds/inferior compared with state-of-the-art algorithms. On average, the
proposed approach outperforms the DONF by 23.99 %, FIFO by 26.21 %, Min-Min 26.61 %, Min-Max
30.81 % on all test cases.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ



Multi-agent local voting protocol for online DAG scheduling 41

Figure 4 presents box plots illustrating the percentage improvements in makespans of the MLVP
algorithm relative to various scheduling algorithms—DONF, FIFO, Min-Min, and Min-Max—across
different workspaces and DAG dimensions. Each workspace, differentiated by executor counts of 3, 6,
12, and 24, is analyzed separately to delineate the algorithm’s performance under varying computational
resources.

Figure 4. Box plot percentage improvements in makespans MLVP compared to DONF, FIFO, Min-Min,Min-Max
for each workspace and each DAG dimension

In the first workspace with three executors, the MLVP algorithm exhibits substantial variation
in performance relative to the reference algorithms, with a wider interquartile range. Conversely, in
workspaces with six, twelve, and twenty-four executors, the MLVP algorithm demonstrates more
consistent improvements, as indicated by the narrower interquartile ranges.

The observing the median values, it is evident that the MLVP algorithm tends to offer
improvements in makespan across all workspaces, albeit with variations in the magnitude of
improvement. Particularly, the algorithm shows consistent positive enhancements compared to the
FIFO, Min-Min, and Min-Max algorithms across all executor counts. In the three-executor workspace,
MLVP presents around a 10 % improvement over DONF and FIFO and approximately a 5 %
improvement over Min-Min and Min-Max. In the six-executor workspace, MLVP shows nearly 20 %
improvement across all compared algorithms. In larger workspaces with twelve and twenty-four
executors, MLVP consistently exhibits around a 60 % improvement over the reference algorithms.

The MLVP algorithm demonstrates a promising capacity to improve makespan in various
workspaces across different topologies and against multiple scheduling algorithms. It exhibits
consistency and adaptability across different numbers of executions, underlining its potential to scale
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effectively in heterogeneous computing environments (Fig. 5). Future work might focus on exploring
the robustness and scalability of MLVP in more diverse and complex scheduling scenarios to further
validate its applicability and performance.

Figure 5. Box plot with makespan percentage difference comparisons between MLVP and DONF for each
workspace

Conclusion

This paper presents the Multi-Agent Local Voting Protocol (MLVP), a novel approach to
scheduling tasks in directed acyclic graphs (DAGs) within heterogeneous computing environments.
The MLVP effectively addresses the challenges of online DAG scheduling by dynamically balancing
the load across multiple executors. This is achieved through a local voting protocol that calculates an
aggregated metric for each executor-DAG node pair, leveraging factors such as incoming connections,
available nodes, and executor performance. The optimization of combination of these metrics is
performed using a genetic algorithm, allowing for probabilistic task assignment that improves
makespan.

The MLVP’s innovative approach demonstrates significant improvements over traditional
scheduling algorithms, with simulations showing up to a 70 % reduction in makespan on specific
graph topologies and an average performance gain of 23.99 % over the Degree of Node First
(DONF) algorithm. These results highlight the MLVP’s scalability and effectiveness in various system
configurations, making it a promising solution for real-world applications in cloud computing, data
mining, and beyond.

Looking forward, future research could explore the extension of the MLVP to support multi-
dimensional executor requirements and handling dynamic conditions such as fluctuating numbers of
executors. Additionally, further investigation into optimizing resource reservation based on anticipated
critical system tasks could enhance the algorithm’s adaptability and efficiency.
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