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Introduction

The paper deals with a control problem under conditions of disturbances (see, e.g., [1-4])
involving a dynamical system described by a non-linear ordinary differential equation and a cost
functional, which evaluates system’s motions. The aim of the control is to minimize the value
of the cost functional against the worst case disturbances. So, the control problem is stated as a
problem of optimization of the guaranteed result. In the classical formulation of such problems,
it is usually assumed (see, e.g., [3, Section 1.4], [4, Section 6], and also [5]) that the set of
admissible disturbances, similarly to the set of admissible controls, consists of all measurable
functions with values in a given set, describing instantaneous (geometric) constraints. In this
paper, we continue the research initiated in [6,7] and focus on the case when the set of admissible
disturbances is more specific, that is, there are additional so-called functional constraints on the
disturbance (for some examples, see, e.g., [8—12]).

In [7], to cope with the features arising from the presence of such functional constraints, it
was suggested to modify in an appropriate way the standard notion of a non-anticipative control
strategy (see, e.g., [13,14]) and investigate the guarantee optimization problem in this new class of
strategies. The main result of the present paper is the proof of the fact that, under some additional
assumptions, the corresponding value of the optimal guaranteed result can be achieved with the
help of feedback control strategies, or, more precisely, control strategies with full memory (see,
e.g., [5] and also [15]), which are acceptable from a practical point of view. In particular, this
result implies that the value of the optimal guaranteed result in the class of non-anticipative
strategies coincides with that in the class of full-memory strategies, which means that the class of
full-memory strategies is unimprovable in the sense of [5] (see also [15]).

Compared to the general formulation of the problem presented in [7], we assume that the
dynamics of the system is separated with respect to control and disturbance actions and the set of
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admissible disturbances is finite and consists of piecewise continuous functions. Let us note that
control problems with a finite set of disturbances have many practical applications. For instance,
such problems can be viewed as control problems under uncertainty described by a finite set of
scenarios of evolution of some system parameters (see, e.g., [10]).

Let us briefly discuss some of the peculiarities of the problem considered in the paper. First,
the problem differs from so-called minimax optimal control problems (see, e.g., [16]) in which
optimization is performed over the class of open-loop (program) controls. Indeed, it can happen
that the value of the optimal guaranteed result in the class of open-loop controls is greater than that
in the class of feedback control strategies. Second, in contrast to, e.g., [12], we do not require
a possibility to recover the disturbance during a short initial period of time by observing the
system’s motion, which would allow us, on the remaining time interval, substitute this disturbance
into the dynamics and solve the corresponding optimal control problem (without any uncertainty).
In fact, we do not exclude the situations when, during the whole control process, we cannot find
out exactly which one of the admissible disturbances is acting in the system, and, therefore, we
must choose current control actions under conditions of incomplete information about the future
behavior of the system. Third, in general, we could pass from the considered problem to the
corresponding guarantee optimization problem in which all measurable disturbances satisfying
the instantaneous constraints are admissible. In particular, this would allow us to directly use the
approaches and methods developed in the theory of positional differential games (see, e.g., [3,4]).
However, it can happen that a feedback (namely, positional) control strategy that is optimal in the
obtained extended problem does not guarantee the desired result in the original problem with the
finite set of disturbances. Finally, let us note also that all the peculiarities described above can be
readily seen in the example presented in Section 5 below.

In addition, let us make some remarks concerning the proof of the main result of the paper.
Let us recall that, according to the technique provided by the theory of positional differential
games, a usual way of how to built a feedback control strategy that guarantees a given value of
the cost functional against every admissible disturbance is to construct an appropriate so-called
u-stable set or u-stable function and then apply the corresponding procedure of extremal aiming
(see, e.g., [3, Sections 2.2 and 2.4] and [4, Section 8]). Trying to follow this direction in the
considered problem with the finite set of disturbances, we could take, for instance, the u-stable
optimal guaranteed result function proposed in [7], but, nevertheless, certain difficulties would
be encountered in designing of an appropriate extremal aiming procedure. The reason for these
difficulties lies primarily in the fact that the set of all the disturbances that remain admissible up
to a current time depends on the history of the system’s motion.

In this connection, in order to show that the value of the optimal guaranteed result in the
class of non-anticipative control strategies is achieved in the class of control strategies with full
memory, we adopt another approach. Namely, we propose a procedure that associates every non-
anticipative strategy with a full-memory strategy such that the following property holds: for any
admissible disturbance, the system’s motions generated by the non-anticipative strategy and by
the full-memory strategy are close to each other with respect to the uniform norm. Hence, the as-
sociated full-memory strategy guarantees the value of the cost functional close to that guaranteed
by the original non-anticipative strategy, and the desired statement follows. A key element in the
construction of the full-memory strategy is a rule that, during the control process, recovers the set
of all the admissible disturbances that, together with test controls assigned at certain periods of
time, agree with the observed system’s motion. The successful identification of this set allows us
to predict the future values of the unknown disturbance acting in the system and, therefore, makes
it possible to use the corresponding controls assigned by the original non-anticipative strategy.
It should be emphasized that the correctness of the arguments described above is established in
the paper under an additional assumption, concerning some special property of distinguishability
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of the admissible disturbances by observing the corresponding system’s motions. In spite of the
fact that this assumption narrows the applicability of the result, it is valid, for instance, if the
right-hand side of the dynamic equation is injective with respect to disturbance actions and all
the admissible disturbances are piecewise constant.

The paper is organized as follows. In Section 1, we formulate the considered control problem
under conditions of disturbances. In particular, we describe the dynamical system, the sets of
admissible controls and disturbances, and the cost functional. In Section 2, we introduce the
classes of non-anticipative strategies and full-memory strategies and establish a connection be-
tween them. In Section 3, we show how to construct the full-memory strategy associated with
a given non-anticipative strategy. In Section 4, we prove the main result and present a class of
problems for which all the assumptions made in the paper are satisfied. In Section 5, we provide
an illustrative example.

§ 1. Statement of the problem
We consider a dynamical system whose motion is described by the differential equation
dx(t)/dt = f(t,2(t),u(t)) + g(t, x(t),v(t)), te€T:=[to, 7], (1.1)
and the initial condition

Here, ¢ is time; x(t) € R™ is a current value of the state vector; u(t) € RP and v(t) € R? are
current values of the control and disturbance, respectively; xq € R™ is a fixed initial value of the
state vector. The control and disturbance are subject to the instantaneous constraints

u(t) e P, w(t)eQ, tel, (1.3)

where P C R? and () C R? are given compact sets. The functions f: 7" x R*" x P — R”
and g: T'x R™ x () — R™ are continuous and satisfy a local Lipschitz continuity and a sublinear
growth conditions with respect to the second variable (see, e.g., [3, Section 1.2] and [4, Section 3]
for details).

Let U and V be the sets of all (Lebesgue) measurable functions w: 7" — P and v: T — (@,
respectively. In accordance with (1.3), by an admissible control, we mean every function u(-) €
€ U. On the other hand, we suppose that a finite set

V= (ve(-)) ety CV (1.4)

is specified and only the functions v(-), ¢ € 1,ny, are admissible disturbances. Thus, in the
terminology of [7], the disturbance is subject to the additional functional constraint v(-) € V.
Moreover, we assume that every function v,(-), ¢ € 1, ny, is piecewise continuous and

ve(to) = vim(to), €,m € 1,ny. (1.5)

Let us note that, throughout the paper, we call a function defined on T piecewise continuous if it
is left-continuous, has at most a finite number of discontinuity points, and, at every discontinuity
point, possesses a finite right limit.

Due to the conditions imposed on the functions f and g, for every u(-) € U and every
v(-) € V, there exists a unique system s motion x(-):= x(-;u(-),v(:)), which is an absolutely
continuous function z: 7' — R™ that meets initial condition (1.2) and, together with «(-) and v(+),



616 On guarantee optimization in control problem with finite set of disturbances

satisfies differential equation (1.1) for almost every (a.e.) ¢t € 7. In addition, we can choose
numbers R > 0 and L > 0 such that

[t ul-), o (I < B,z ul),0() = 2(mul), 0() < Lit = 7| (1.6)
forany ¢, 7 € T, any u(-) € U, and any v(-) € V, and find a number A > 0 such that

1f (2 u) = Fty,w)ll + [lg(t2,0) = gt y, )] < Az = y]] (1.7)

forany t € T, any z, y € R" with ||z|| < R, ||y|| < R, any u € P, and any v € Q.
We assume that a cost functional has the form

J(),ve(-) = o(z(5ul)ve(), ul() €U, L€l ny.

Here, 0: C(T;R™) — R is a continuous function, where C'(T"; R™) is the space of all continuous
functions from 7" to R™ endowed with the uniform norm. The aim of the control is to minimize
the value of the cost functional against the worst case admissible disturbances. Thus, the control
problem under consideration is stated as a guarantee optimization problem.

§ 2. Control strategies

Since u(t) and v(t) are separated in differential equation (1.1) and the set V' of admissible dis-
turbances is finite and consists of piecewise continuous functions (see (1.4)), the non-anticipative
(control) strategies introduced in [7, Section 1.4] can be defined as follows.

Consider a mapping a: V' — U. Put

ue() = a(ve()) (), ()= w(sue(),ve(), L€ Lny, (2.1)
and, for any {, m € T,ny and any ¢ € T, denote
fem(t) = [t ze(t), um (), fot) = feo(t) (2.2)
and
e (t) = gt ze(t), vm (1)), go(t) = gre(t). (2.3)

Then, the mapping « is called a non-anticipative strategy if, for every ¢, m € 1,ny and every
s € (to, V] satisfying the condition

9e(t) = gem(t), t € [to,s], (2.4)
it holds that
zo(t) = zp(t), t € [to, s]. (2.5)
Observe that, in view of (1.1), equalities (2.4) and (2.5) imply that
fi(t) = fom(t) fora.e.t e [tg,s]. (2.6)

Let A be the set of all non-anticipative strategies. Respectively, the value of the optimal guaran-
teed result in the class of non-anticipative strategies is given by

I':= inf max o(z(;;a(ve(-))(-), ve("))). (2.7)

acA Lel,ny
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Further, following, e. g., [5, 15], we introduce a notion of a full-memory (control) strategy.

A set A:=(7;);conx C T such that g = to, 7,1 < 7; for all i € I,nx, and 7,,, = ¥ is called
a partition of the interval T. The set of all such partitions is denoted by Ar. A full-memory
feedback on a partition A € Ay is a family U* := (U#),cgx=1 of mappings

)

US: O(lto, i R™) — U, i€0,na—1,

Ti+1)7

where U/, -,y is the set of restrictions of all functions u(-) € U to [7;,7;11). A full-memory
feedback U2 in a pair with an admissible disturbance v(-), £ € 1,ny, forms in system (1.1),
(1.2) a control u(-) € U according to the step-by-step rule

u(t) == UiA (x(~)][t0m])(t), t €1, Tiy1), 1€0,na—1, (2.8)

where 2(-)|,r is the restriction of the system’s motion z(-) to [ty,7;]. For definiteness, we
formally put u(9):= u* for a fixed u* € P. Let x(-;U”,v,(-)) denote the system’s motion
uniquely generated by U2 and vy(-).

By a full-memory strategy, we mean a family U :=(U®)aca, of full-memory feedbacks
specified for all partitions A € Ar. Let S be the set of all full-memory strategies. The value of
the optimal guaranteed result in the class of full-memory strategies is defined by

I',:= inf lim su max oz -;UAW N). 29

where d(A) := max;c, (7 — 7i—1) is the diameter of the partition A.

()

Lemma 1. The optimal guaranteed result in the class of non-anticipative strategies is not
greater than that in the class of full-memory strategies, i. e., the inequality I' < T', holds.

Proof Fix U:=(U”)rea, € S and A := (Ti)icoms € Ar. For every £ € 1,ny, consider
the motion z,(-) := x(-; U?, vy(+)) of system (1.1), (1.2) and the corresponding control, which is
denoted by u,(-). Define a mapping o: V' — U by

a(ve())(t):=we(t), teT, (€1,ny. (2.10)

Let us show that a € A, i.e., o is a non-anticipative strategy.
For every ¢, m € 1, ny, consider the auxiliary functions f;,,(+), fe(-) and gom(-), ge(-) given
by (2.2) and (2.3).
Fix ¢, m € 1,ny and s € (to,?] such that condition (2.4) holds. Let us denote
Ty = max{i e€lna—1: 1, < s}
and prove that

xé@) = xm(t>7 te [to,Ti*]' (211)

Due to initial condition (1.2), we have x,(tg) = x,,(ty). Arguing by induction, let us take
i € 0,i, — 1 and assume that equality (2.11) is fulfilled for every ¢ € [ty,7;]. Then, in view
of (2.8), we derive

we(t) = UL (20()itom)) (1) = UL (2 (Vo)) (1) = um(t), ¢ € [73,7iga),
and, therefore, fy(t) = fo.n(t) for all t € [, 7;11). Hence, and by (2.4), we get
xo(t) = xo(mi) + / (fg(T) + gg(T))dT = Tp (1) + / (f&m(’f) + gg,m(T))dT, t € 1, Tiz1)-

Ti Ti
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Consequently, for all ¢ € [7;, 7;41], we have

t t
[ze(t) = zm ()] < / (I femn(T) = fn (DI + 1920 (T) = g (T)I])dT < A/ [ 2e(7) = 2m(7)|dT,
where )\ is the number from (1.7). Thus, by Gronwall’s inequality, we obtain z,(t) = x,,(t) for
all t € [7;, Ti11]. As a result, we conclude that equality (2.11) is valid for all ¢ € [y, 7;, ]
Further, arguing similarly to the induction step above, it can be proved that x(t) = z,,(t) for
all t € [1;,, s], too. By virtue of (2.5), the inclusion « € A follows.
Now, recalling that z(+; U2, ve(+)) = z(+; a(ve())(+), ve(+)) for all £ € 1, ny by construction
(see (2.10)), in accordance with definition (2.7) of [', we derive
max o (z(;U%, () > T (2.12)
Lel,ny
Since estimate (2.12) is fulfilled for any full-memory strategy U := (U*)aca, € S and any
partition A € Ar, in view of definition (2.9) of [',, we get I', > T". U

§ 3. Construction of full-memory control strategy

Let a non-anticipative strategy o € A be fixed. Let us consider the corresponding con-
trols w,(-), motions z,(-) of system (1.1), (1.2), as well as auxiliary functions fy,,(-), fe(-)
and gy, (+), ge(-) for all £, m € 1, ny, which are given by (2.1)-(2.3).

For every ¢, m € 1,ny, put

Sem = max{s € T: g,(t) = gom(t), t € [to, s]}. (3.1)

Let us note that the set under the maximum sign is not empty. Indeed, due to (1.5), we have
ge(to) = ge.m(to), and, therefore, this set contains the point ,. In addition, recalling that the func-
tions vy(-) and v,,(-) are piecewise continuous, we conclude that the functions g,(-) and g ()
are piecewise continuous, which implies that the maximum is attained. Moreover, since the
mapping « is non-anticipative (see (2.4)—(2.6)), we obtain

$g(t) = 'Tm(t)v te [t07 SZ,m]a (32)

and, consequently, the equalities below are valid:

9e(t) = gem(t) = gm(t) = gme(t), T € [to, se.m), (3.3)

and

fg(t) = f&m(t) = fm(t) = fmj(t) fora.e. t € [to, Sg,m}. (34)

In particular, based on relations (3.2)-(3.4), we can say that the disturbances v(-) and v,,()
are “undistinguishable” until s;,,,. On the other hand, if s;,, < ¥, then, according to (3.1), these
disturbances v(-) and v,,(-) are “distinguishable” in an arbitrarily small right neighbourhood
of s;,,. Namely, it holds that

gZ(')’[SZ,m,t] 7£ g@,m(')“sLm,t]v t e <5€,m7 19]

Respectively, in what follows, we say that the property of strict distinguishability (of the
admissible disturbances) is fulfilled for the strategy « if, for every ¢, m € 1, ny such that sy, < 9,
the condition below is satisfied:

im lge(t) — gem(t)]| > 0. (3.5)

t—sp,m+0
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The limit in (3.5) exists because the functions g,(-) and g,,,,(-) are piecewise continuous.
Further, let us introduce the set

A, = {Sg,mi €7m el, nv} U {to} (36)

Let us observe that ¥ € A, since s,y = ¢ for any ¢ € 1, ny. Therefore, the set A, is a partition of
the interval 7', i.e., A, € Ar. Let us arrange all the points of A, in ascending order and denote
them by &, for k € 0,na,. Thus, we have

Ay = (&k)rcomas (3.7)

Now, let us proceed with a description of how, based on the non-anticipative strategy a, we
construct a full-memory strategy U := (U*)aca, € S. Let us take a partition A := (Ti)icoms €
€ Ar. In accordance with (2.9), we can confine ourselves to the case when d(A) < d(A,). For
every k € 0,na, — 1, denote

1 = mm{z el,na: 1> fk}

Let us define the full-memory feedback U2 := (Uf),gmx=7 as follows. For i = 0, we set

U (x())(t) = us,  tE [r0,m), () € C[to, 0[; R"), (3.8)

where u, € P is a fixed test control. For every i € 1,nan — 1, we first find k£ € 0,n, — 1 such
that 7; € (&, &k11). Then, for a given function z(-) € C([to, 7;]; R™), we choose

(i) — (&) 1 /”J‘

Ti; — & Ti; — fj &

(f(t z(t), u) + gg(t))dtH } (3.9)

l}; ;= min {Argmin max
lel,ny JEOk

Note that 7; > 7;, and, therefore, the values z(t) used in (3.9) are well-defined. After that, if
Tiv1 < &ky1, we define

UzA(I<)>(t) = Uy, (t>’ te [Tiu Ti-‘rl)’ (310)

and, if 7341 > 41, which implies that 7, = 75, ,, we put

DB () (1) = U 0 E TSk G.11)
Use, ift € [€k+177—i+1)~

In other words, for every k € 0,na, — 1, the control on the interval [{, &, 1) is assigned
by the following procedure. On the initial short period of time [{,7;, ), the test control
is used. By observing the realized system’s motion on all the test intervals [§;, 7], j € 0,k,
the admissible disturbance vy, (-) is determined according to the rule (3.9). On the remaining
period of time [7;, ,&k+1), the control wy, (+), specified by the non-anticipative strategy « for the
disturbance vy, (-), is applied.

Lemma 2. Let a non-anticipative strategy « € A possess the property of strict distinguishabi-
lity (see (3.5)). Let U :=(U*)aca, € S be the full-memory strategy constructed on the basis of a
by procedure (3.8)—(3.11). Then, for any n > 0, there exists 6 > 0 such that, for any partition
A € Ar satisfying the condition d(A) < 6 and any £ € 1,ny, it holds that

||ac(t; UR,v(-) — x(t;a(w(-))(-),w()) H <n, teT. (3.12)
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Proof Letus note that, in the proof, the notation introduced above is used in relation to the
given non-anticipative strategy «.

The property of strict distinguishability implies that there is a number ¢ > 0 such that, for any
¢, m € 1, ny satisfying the condition s,,, < ¥, the inequality below is valid:
lim  lge(t) = gem(®) = €.

t—sp

Hence, recalling that the functions g,(-) and g, () for all £, m € 1, ny are piecewise continuous,
we can find w € (0,d(A,)) such that, for every ¢, m € 1, ny, if s;,, < ¥, then

1

T — Sem

/T (ge(t) — gz,m(t))dtH > g, T € (Stam, St.m + W)

Se,m

Let n > 0 be fixed. Choose o > 0 satisfying the conditions
6 <w, 2L na P05 < (/8 2Lna, eMP§ <7,

where the numbers L and A\ are taken from (1.6) and (1.7), respectively. Let us verify that the
statement of the lemma holds for this number 9.

Let A € Ag be such that d(A) < §, and let ¢ € 1,ny. Consider the system’s motion
Z(-):= 2(;U?,vz(-)) and the corresponding control, which is denoted by %(-). Put

T(t) = f<t7§<t>7ﬂ(t))> g(t) = g(tai(t)v U?(t»? tel.

Let us observe that, according to the definition of the full-memory feedback U%, for every
k € 0,na, — 1, we obtain

*9 ft e P Y
a(t) =3 " it € (6,7 (3.13)
Uzk (t), ift € [Tika £k+1)7

where

= ) . 1 T

(), := min {Argmm max / (9(t) — gg(t))dtH }

tetny 30k Ti; — &1l ¢
Let us show that, for every k& € 0,na,, the inequality below is valid:
1) — 5] < 2Lk, 1 € [t &) (3.14)

For £ = 0, we have & = ty, and, hence, inequality (3.14) holds due to initial condition (1.2).
Arguing by induction, let us take k, € 0,na, — 1, assume that this inequality is fulfilled for
k = k., and prove it for k = k, + 1.

To this end, let us establish the inequality

—— (3.15)

Observe that, for every j € 0,k, and every ¢ € [£;, 7;,], by the induction assumption and the
choice of A, L, and 6, we get

[9(2) = gz < Al[Z(t) = z5(®)]| <
(1) = ZE + 17(6) — 25N + l22(&5) — 22 (D)) <

<Az
< A(2L6 + 2Lk, e*="10)5) < 2L Ana X705 < (/8. (3.16)
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Hence, and owing to the definition of /;, as one of the minimizing elements, we conclude that

1
max
J€0ks Tij — fj

/Tij (a(t) — g9, (t))dtH < max

3 J€0kx Tiy — fj

/Tij (g(t) — ge(t))dtH = é G17

&

On the other hand, let us consider m € 1,ny such that sz, < &, . In view of (3.6) and (3.7), let
us take j € 0, k, for which the equality §; = s7,, is valid. We have

- H/gjj (g3(t) — gz,m(t))dtH - ‘

/%@@—%@wﬂz

&

/ (a(t) - gz(t))dtH - H /6 (g2.(8) — gm(t))dtH.

&5

Let us estimate each of the terms from the right-hand side of this inequality. For the first term,
due to the choice of w and §, we derive

Hfg (92(t) = gz,m(t))dtH >

For the second term, using (3.16), we get
Tij - é‘
| @) guoyer] < 5, - .

In order to estimate the third term, we note that 2;(;) = z,,,(§;) according to (3.2), and, therefore,
for all t € [¢;, 7;,], we derive

192.m(8) = gm (D) ]| < Allzg(t) — 2m(8)]] <
< Allzz(t) = 27+ (&) — zm(®)]]) < 2AL8 < (/8.
Thus, we come to the inequality

1

Ti; —§j

/g (T(t) — gm(t)) dtH N % |

J

As a result, we conclude that, for any m € 1, ny, if Sim < &k, then

1
max
je0k. Ti; — &

JCORROI S

&

This estimate combined with (3.17) yields (3.15).

Further, in view of (3.6) and (3.7), inequality (3.15) implies that STt = &k.+1. Hence,
by (3.4), we have f4(t) = f37, (t) for a.e. t € [r;, ,&.41]. Respectively, taking (3.13) into
account, we obtain

fit) = f(t,x5(t),u(t)) fora.e.tem, ,E.t1)- (3.18)

Now, based on the induction assumption, for all ¢ € [§;,, 7;,_|, we derive

1Z(t) — 27O < |z(t) — T(&e )| + 1Z(8k.) — 27(E) ] + [[27(Ek,) — z2(D)]| <
< 2L0 + 2Lk, M "0)5 < 9L (k, 4 1)k —t0)g, (3.19)
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Due to (3.18) and (3.19), for every t € [7;, , &k, 41), we have
[Z(t) — 25| <

I+ / IF(r) = F(r,4(r), (r)) | + / 15(r) — g2(7)ldr <

oy ko

< ||T(le*) - xZ(Tik*)

¢
< 2L(k, + 1)6’\(’5k* —to)§ 4+ )x/ |Z(7) — x4(7)|dT.

Ak*

Consequently, by Gronwall’s inequality, for all ¢ € [7;, , &, 1], we get
1Z(t) — z3(t)|| < 2L(k, 4 1)) 5M i) < O (k, 4 1)eMeRer17t0) g, (3.20)

Inequality (3.14) for £ = k, + 1 follows from the induction assumption and estimates (3.19)
and (3.20).

Thus, it remains to note that inequality (3.14) for £ = na, implies inequality (3.12) for ¢ =
owing to the choice of 9. The lemma is proved.

O i

§ 4. Main result

The main result of the paper is the following.
Theorem 1. Suppose that, for every ¢ > 0, there exists a non-anticipative strategy o. € A for
which the property of strict distinguishability is fulfilled and the inequality below is valid:

Eren% o(z (5 ae(ve(-))(), () <T +e. 4.1)

Then, the optimal guaranteed result in the class of non-anticipative strategies coincides with that
in the class of full-memory strategies, i.e., the equality I' = T', holds.

Proof. SinceI <T', dueto Lemma 1, it suffices to show that I', < TI'. Let us fix ¢ > 0 and
take a. € A as in the assumption of the theorem.

Note that, according to (1.6) and by the Arzela—Ascoli theorem, there is a compact set X C
C C(T;R") such that z(-;u(-),v,(+)) € X for any u(-) € U and any ¢ € 1,ny . Hence, recalling
that the function o is continuous, let us choose > 0 such that, for every z(-), y(-) € X, if
|x(t) —y(t)|| < nforallt €T, then |o(x(-)) — o(y(-))| < e. Further, by Lemma 2, there exists
a full-memory strategy U :=(U”)aea, € S and a number § > 0 such that, for any A € Ap
satisfying the condition d(A) < ¢ and any ¢ € 1, ny, the inequality

[o(t; U2, ve()) = w(tac(ve() (), ve()|| <m, teT,

is valid. Then, by virtue of the choice of n and inequality (4.1), for every A € At such that
d(A) < § and every ¢ € 1,ny, we obtain

O'(JZ('; UA,W(-))) < O'(:L‘(-; 048<Ug<'))('),1)g('))) +e<TI+2e.
Consequently, in accordance with definition (2.9) of I, we derive

I, < lim sup max o (2(; U2, v,())) < T + 2e.
=40 AcAr: d(A)<s Lelny
Thus, we conclude that I', < I' + 2¢ for any € > 0 and, therefore, I, < T. O
In Theorem 1, it is assumed that the property of strict distinguishability is fulfilled. Let us
present a sufficient condition for this property to be valid.
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Proposition 1. Assume that the function Q) > v — g(t,z,v) € R" is injective for every t € T
and every x € R"™ and all disturbances vy(-), { € 1,ny, are piecewise constant. Then, the
property of strict distinguishability is valid for any non-anticipative strategy o € A.

Proof Letus fix @ € A and consider the corresponding system’s motions z,(-), functions g,(-)
and gy,(-), and times s, for all £, m € 1,ny, which are given by (2.1), (2.3), and (3.1).

Let us take ¢, m € 1, ny satisfying the condition s;,, < 9. Since the functions v,(-) and v,,(*)
are piecewise constant, there are s* € (s;,,,9] and v}, vi, € @ such that v,(t) = v} and
v (t) = vi, for all t € (sg,,, s*]. Hence, we have

g£<t) - g(thf(t)),UZ)a gﬁ,m(t) = g(txf(t)avjn)v t e (Sf,mas*]a
and, consequently,

m (ge(t) — gem ()| = |9(Se.m> 2e(Se.m), v7) — 9(Sem, Te(Sem), vy,

t%S[me)

Let us suppose that this limit is equal to 0. Then, by virtue of the injectivity assumption, we get
v; = v},. Therefore, the equality g,(t) = g¢m(t) holds for all ¢ € (s, s*], and, thus, we come to
a contradiction with the definition of s, ,,. Hence, we conclude that inequality (3.5) takes place,
which completes the proof. U

§ 5. Example
Let us consider the dynamical system
de(t)/dt = u(t) +v(t), teT:=[0,3], z(0)=0,
where z(t) € R and the control and disturbance are subject to the instantaneous constraints
u(t) e P:=[-1,1], wo(t) € Q:={-1,0,1}, teT. (5.1)

Let us suppose that the set V' of admissible disturbances consists of two functions

0, ifte0,1]U (23], 0, iftelo1],
vi(t) = i vo(t) == )
1, ifte(1,2], -1, ifte(1,3].

The aim of the control is to minimize the cost functional
J(u(-),ve(+) = =z ul-), ve(+)], ul-) €U, £e{l,2}.

Let us calculate the value I" of the optimal guaranteed result in the class of non-anticipative
strategies. To this end, let us first note that, in the considered example, a mapping o: V' — U is
a non-anticipative strategy if and only if

e(t:0(0()() 01() = 2(fa(m()(),e(), e 0,1] (5:2)

Further, let us define a mapping ay: V' — U by

~ fos, iftelo,1), o5, ifteo),
ao(e())():= {1, itreqy, 0= {—1, ifrepy O

By direct calculations, we get oy € A (see (5.2)) and

max{—[z(3; ao(v1(-))(-), 01 () |, =|2(3; a0 (va()) (), va() |} = =3.5.
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Now, if we assume that there is o € A such that

lz(3; (o1 (1)) (), v1 (1)) | > 3.5, |@(3;(v2(-))(+), v2(+))| > 3.5,

then, due to the instantaneous constraints on the control (see (5.1)), we obtain

z(La(oi(-)(),v1(-)) > 0.5 > z(1;(va(-)) (+), va(+)),

which contradicts (5.2). Thus, we conclude that I' = —3.5.

Theorem 1 and Proposition 1 imply that, in the problem under consideration, the optimal
guaranteed result in the class of full-memory strategies is I', = —3.5. Moreover, in accordance
with Section 3 and Lemma 2, based on the (optimal) non-anticipative strategy «y, defined by (5.3),
we can construct a full-memory strategy that provides this result I, = —3.5.

In addition, let us observe that, for the value of the optimal guaranteed result in the class of
open-loop controls, we have

[ inf max{—[o(3u(), 0 ()] —laGuC)mO)} =-2> T 64
and an open-loop control achieving the infimum in (5.4) is uo(t) := —1 for all ¢ € [0, 3].

Finally, if we pass from the problem with only two admissible disturbances v;(-) and v,(-) to
the problem in which every disturbance v(-) € V is admissible, then, for the corresponding value
of the optimal guaranteed result in the class of full-memory strategies, we get

[.:= inf lim su sup (—|z(3; U2, v(- —0 5.5)
UES 6440 pea, E(A)ga v(‘)fv( |( (N (

In particular, the infimum in (5.5) is achieved at the full-memory (more precisely, positional)
strategy U := (U”)aca, € S such that, for every partition A := (7;) € Ar, the full-memory

feedback U := (U2) g7 is given by

1€0,nA

1, ifx(n) >0,
UiA(m(-))(t) =10, ifz(r;) =0, te[n,1n), =z(-)eC(ty,n;R"), i€0,na—1.
1, ifa(n) <0,

Nevertheless, for any A € A, we derive
3—d(A) <z(3;U%vi(-) <3, —4<a(30% n() < —4+d(A),

and, consequently, in the original problem with the admissible disturbances v;(-) and vy(-), the
full-memory strategy U does not provide the optimal guaranteed result I', = —3.5.
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00 onTUMHU3AIUM FAPAHTHH B 3a/1a4e YIPABJIeHHS ¢ KOHEYHBIM MHOKECTBOM MOMeX

Kniouesvie cnosa: YIpaBJICHUC B YCJIOBHUAX IOMEX, OIITUMAJIbHAA TrapaHTUs, HCYNPCIKAAKOIIasa CTpaTrerus,
CTparerus ¢ ITOJTHOM NnaMATbIO, paCIioO3HaBaHUC MMOMEX, HCYITYyUIIaCMOCTb.

YIK 517.977
DOI: 10.35634/vm210406

B crarbe u3ywaercs 3amaua ynpaBlIeHHs B yCIOBHSX MOMEX, KoTopas (OpMyIUpyeTCs Kak 3ajava ONTH-
MHU3alMK FapaHTUPOBAHHOTO pe3yiabrara. B oTivune oT KJIaCCHYECKOM MOCTAHOBKM TAKUX 3aJlad MpeIo-
JaraeTcsi, YT0 MHOXKECTBO JOMYCTUMBIX IMOMEX KOHEYHO U COCTOUT M3 KyCOYHO-HENPEPHIBHBIX (DYHKIIH.
C y4eToM 3TOrO MOTIOMHHUTEIHHOTO (PYHKIIMOHATHHOTO OTPAHUYCHHUS Ha TIOMEXY OTPEACIISICTCS TTOIXOJSI-
LU KJ1acc HEYMPEeKJAIONINX CTpaTeruil (KBa3UCTpaTeruil) yIpaBlIeHUs U PACCMAaTPUBACTCSI COOTBETCTRY-
[OIIIasi BEJIMYMHA ONTUMAIBHOTO rapaHTUPOBAHHOIO pe3yibrara. [I[pu HEKOTOPOM TEXHUYECKOM IMPEIoIo-
KCHUU O CBOWMCTBE Pa3IMYMMOCTH JOMYCTUMBIX MOMEX JIOKAa3bIBAETCS, YTO 3TOT PE3YJIBTaT MOXET OBITh
JIOCTUTHYT TIyTEM HUCIIOJIb30BAaHUS CTPATEruil ynpaBieHUsl ¢ MoJHOW nmamatbio. Kak cienctBue, ycraHaB-
JIMBAETCS HEYIYUIIaeMOCTh Kjlacca CTpaTeruil ¢ mojJHo nmaMsThio. KilroueBbIM 3J1IEMEHTOM J0Ka3aTeabCcTBa
SIBJISIETCSA MPOLEAYpa PacliO3HABAHUS ICUCTBYIOIIMX B CUCTEME MTOMEX, KOTOpas MO3BOJISIET BCSIKOM HEyIpe-
JK/TAIOMIe CTpaTeruyl MOCTABUTh B COOTBETCTBHE ONU3KYIO 10 TapaHTHPOBAHHOMY PE3YNBTaTy CTPaTEeTHIO
C MOJHOW NMaMAThI0. B 3aKiitoueHne cTarbu NPUBOAUTCS WLITIOCTPUPYIOIIUI IpUMED.

dunaHcupopaHue. PaboTa BBHINONHEHA B paMKax HMCCIIENOBAHUM, MIPOBOIUMBIX B YpPalbCKOM MaTeMaTH-
YecKOM LeHTpe NMpH (pUHAHCOBOH moepke MUHHCTEpCTBA HAyKH M BhIcIIero o0pazoBaHus Poccuiickoit
Oeneparun (Homep cornamenns 075-02-2021-1383).
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