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Introduction

The paper is concerned with the zero-sum differential game where the payoff functional is
given by the minimization of some function along the trajectory. Following [4], we will call such
games differential games with minimal cost (Barron in [4] considered the maximization condition;
however it seems that the minimization is more natural in the light of possible application). The
differential games with minimal cost include the pursuit-evasion games, where the pursuit should
be performed not at the given time but up to the final time instant [29]. Moreover, one can
reduce to the games with minimal time the general setting of differential games with final time
determined by reaching a target set (see [11] for more information on such type of differential
games).

Krasovskii and Subbotin in their seminal book [24] proved the existence of the value function
of the zero-sum differential game with minimal cost (see also [3,4] for the case when the payoff
depends also on the players’ controls) under certain assumptions which include so called Isaacs’
condition. Moreover, they proposed the construction of players’ strategies which are optimal at
the given point. Notice the Krasovskii and Subbotin used the feedback formalization. There are
several other approaches to the differential game theory. Among them are control with guide
strategies [24] and the nonanticipative strategies [9,31]. It is proved that these formalizations are
equivalent to the feedback approach in the sense that they produce the same value function [30].
Notice that the value function of the differential game with minimal cost solves the Isaacs—
Bellman equation with additional inequality constraints [29]. In the case of time-homogeneous
dynamics and payoff functions, the differential game with minimal cost can be reduced to the
games with terminal payoff, where the first player can freeze the system [27].

In the paper, we study approximations of the value function based on solutions of an aux-
iliary continuous-time stochastic game. We follow the approach proposed by Krasovskii and
Kotelnikova [21-23]. In those papers, the approximation of the value function of the differen-
tial game with terminal payoff was constructed based on solutions of the stochastic differential
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game. The key tool in the aforementioned papers is the concept of stochastic guide that allows
to design suboptimal players’ strategy using optimal strategies in the auxiliary stochastic game.
Paper [2] extends the approach of [21-23] to the case when the dynamics of the auxiliary game
is given by a Lévy—Khintchine generator (see [18] for the general theory of systems governed
by Lévy—Khintchine generators). This class of auxiliary games includes stochastic differential
games and continuous-time Markov games (i.e., continuous-time stochastic games with dynamics
governed by a Markov chain). Notice that the optimal strategies in the auxiliary stochastic games
often can be constructed using the solution of Isaacs—Bellman equation. Using the fact that the
Isaacs—Bellman equation for the stochastic differential game with terminal payoff is second-order
parabolic PDE, whereas the value function for the zero-sum continuous-time Markov game with
terminal payoff is determined by the system of ODEs, one can approximate the value function
of the zero-sum differential game with the terminal payoff by solutions of parabolic PDEs and
solutions of system of ODEs [2,21-23].

We extend the methodology of the stochastic guide based on players’ strategies optimal for the
auxiliary continuous-time stochastic game to the case of differential game with minimal cost. To
this end, we use the auxiliary game where the stopping time is controlled by the player who tries
to minimize the outcome. The value function of this auxiliary continuous-time game is described
by the Isaacs—Bellman equation with additional inequality constraints. Recall that the stochastic
differential game implies that the Isaacs—Bellman equation is a parabolic PDE, whilst for the case
of Markov game the Isaacs—Bellman equation takes the form of system of ODEs. The concept
of continuous-time stochastic game with stopping controlled by one player as well as the setting
of Isaacs—Bellman equations with inequality constraints are apparently entirely new. However,
this problem is strongly related to the setting of stochastic game with stopping examined in
the earlier works. First, let us mention so called Dynkin games (see [10,12,13,17,25, 26, 28]
and reference therein for the recent advances in the field of continuous-time Dynkin game).
Notice that the Dynkin game implies that both players choose their stopping time whilst the
dynamics is uncontrolled. The further development of such setting leads to the game theoretical
problems where both players can control the dynamics and stopping time [5-8], as well as to the
setting when one player controls the drift whereas the second one chooses the stopping time [16].
Moreover, let us mention in this direction the setting where the stopping time is not controlled
but distributed on a finite time interval [19,20].

The paper is organized as follows. First, in Section 1 we introduce the differential game
with minimal cost and the differential game with the stopping governed by one player. Section 2
provides the description of the auxiliary continuous-time stochastic games. Furthermore, in that
section we introduce the concept of stability in the auxiliary games and state the main results.
They provide the evaluations of the value function for the differential games with stopping time
governed by one player by functions that are stable for the auxiliary game and the equivalence of
the differential game with minimal cost and the differential game with stopping time controlled
by one player. Section 3 is concerned with the construction of the first player’s strategy in the
differential game with stopping time governed by the first player to evaluate the upper value
function. The second player’s strategy providing the evaluation of the lower value function is
presented in Section 4. The equivalence between the differential game with minimal cost and
the differential game with stopping controlled by one player is proved in Section 5. Finally,
we write out the Isaacs—Bellman equation with additional inequality constraints for the auxiliary
continuous-time stochastic game. It is a sufficient condition on a given function to be a value
function of this auxiliary game (see Section 6). We complete this section with concrete examples
of the Isaacs—Bellman equation with additional inequality constraints for stochastic differential
game and Markov game.
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§ 1. Problem statement

We examine the differential game with the dynamics
d
Ew(t) = f(t,2(t),u(t),v(t)), t€[0,T]), z(t)eR? welU wveV (1.1)

and the payoff functional
Y(z()) = min g(t, 2(1)). (1.2)
t€[to, ]

Such types of games were previously studied in [4,24,29,30].
For the purpose of approximations, it is convenient to replace this game with the differential
game with the dynamics given by (1.1) and payoff

g(7, (7)), (1.3)

where the time 7 is controlled by the first player. Theorem 3 below shows that if the first player
observes the whole history, games (1.1), (1.2) and (1.1), (1.3) are equivalent.
We impose the following conditions on control spaces and function f and g:

1) U and V' are metric compacts;

2) the functions f and g are continuous and bounded;

3) the function g is uniformly continuous w.r.t. z;

4) the function f is Lipschitz continuous w.r.t. the phase variable x for some constant K
5) (Isaacs’ condition) for every t € [0, 7], z,w € RY,

min max(w, f(t, ,u, v)) = maxmin(w, f(t, z,u,v)).

We denote the upper bound of norm of f by R i.e., for every t € [0,T], » € R%, u € U,
vevV,

If(t,z,u,0)] < R. (1.4)

We consider differential game (1.1), (1.3) in the class of stochastic strategies with memory. In

this case the parameter 7 becomes a stopping time controlled by the first player (see [15, p. 120]
for definition of a stopping time).

Definition 1. We say that u = (Q, FY, {F }icito 115 Pr(.ys Ua(), Ta() 18 a strategy of the first
player on [to, T'] provided that the following conditions hold:

(1) (QY, FY {F teptom) is a filtered measurable space;

(ii) for each x(-) € C([to, T]), Py, is a probability on FY, u,(y is a {F{ }cp, 11-progressively

T

measurable process with values in U, when 7, is a stopping time w.r.t. the filtration
{Fi}iepto,r) with values in [to, T7;

(iti) if, for some r € [to, T, z(t) = y(t) when t € [ty, 7], then

Pry(A) = P;{_)(A) for every A € FU,

To() AT =Tyy AT Pf(.)—a.s.

and, for any t € [to, 7],
o) (1) = Uy (1) Priyas.
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Definition 2. Given a strategy of the first player u and an initial position (tg, (), we say
that (Q, F, {Fi }eps), P X, u,v,7) is a motion corresponding to the strategy u and the initial
position (%o, zo) if the following conditions are fulfilled:

(i) (% F, {Fitepo,m, P) is a filtered probability space;

i) Q=Q"x U, F =FVU @ F, F, = F ® F,, where (U, F',{F, heto,r)) is a filtered
measurable space;

(iii) v and v are {F;}cp,, r)-progressively measurable processes taking values in U and V'
respectively;

(iv) X is {F;}iept,,m-adapted process with values in R%;

(v) for P-ae. w= (WY, ') €,
X (1) = 7t X (1), u(t,0),vft,0), X(1,0) = 70,

whereas

U

u(t,w”,w) = uX(tva,w/)(t,wU);

(vi) 7 is the stopping time w.r.t. the filtration {F;},c[, 7] taking values in [to, T'| such that, for
P-ae. w=(wY,u) €,

T(W",0) = Ty wn (WY);
(vii) P is such that, for every A € FY and z(-) € C([to, T],RY),
P(Ax QX () = 2() = Py, (A).
If the first player uses the strategy u, then his/her guarantee at the position (o, x¢) is evaluated

by the quantity
T (to, zo,u) = sup Eg(, X(7)), (1.5)

where sup is taken w.r.t. (Q, F, {F; }icpo. 11 P X, u, v, 7) providing a motion corresponding to
the strategy u and the initial position (%o, x¢), whilst E stands for the expectation according to the
probability P.

The definition of the second player’s strategies is slightly non-symmetric.

Definition 3. We say that v = (', FY, {F) }icpro11, Py V() 15 @ strategy of the second
player on [to, T'] if the following conditions are fulfilled:

1) (Y, FV, {F }eo) is a filtered measurable space;

(i) for each x(-) € C([to, T]), Py, is a probability on FV, v, is a {F} }refs,,r)-progressively
measurable process with values in V;

(iii) if, for some r € [to, T, z(t) = y(t) when t € [to, 7], then
P/ y(A) = Py‘f,)(A) for every A € FV

and, for any ¢ € [to, 7],
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Motion of the system corresponding to the second player’s strategy v and the initial position
(to, o) is introduced as follows.

Definition 4. We say that (0, 7, {F; }ic[s0), P, X, u,v,7) is a motion realizing the strategy v
and the initial position (¢, zo) provided that

(i) (2, F, {Ft}icpo,n, P) is a filtered probability space;

i) Q=Q"x U, F=F oF, F =F ®F, where (O, F {F bictor)) is a filtered
measurable space;

(i) w and v are {F;}icp, r)-progressively measurable processes taking values in U and V/
respectively;

(iv) X is a {F; }set,r-adapted process with values in R%
(v) for P-ae. w= (W, o) €Q,

%X@) — (X (W), ult,w), o(t,w)), X(tw) = o,

whereas

v(t,w’, W) = Vx(twV o) (s w")

(vi) 7 is the stopping time w.r.t. the filtration {F; },cp,,1 taking values in [to, T1;
(vii) P is such that, for every A € FV and z(-) € C([to, T], R?),
PAX Q]X(:) = 2(-)) = Py (A).
The guarantee of the second player in the case when he/she plays with the strategy v from the
initial position (%o, o) is given by
J?(to, g, v) = inf Eg(7, X (7)), (1.6)

where, as above, inf is taken w.r.t. (0, F, {F: hepto,, P, X, u, v, 7) providing a motion corre-
sponding to the strategy v and the initial position (to, (), when E stands for the expectation
according to the probability P.

One can also introduce the upper and lower value functions:

Val™ (¢, 79) = inf{.J'(ts, 70, u): u is a strategy of the first player},

Val™ (tg, 1) = sup{J?(to, zo, 0): v is a strategy of the second player}.

Obviously,
Va,l+(t0, I0> Z Val™ (to, l’o).
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§ 2. Main results

In this section, we introduce the auxiliary stochastic controlled system and the concept of u- and
v-stability for this system (see Definitions 6, 7). Using these notions, we formulate the main
results (see Theorem 1, 2).

It is convenient to introduce the dynamics of the auxiliary system using the generator tech-
nique. Let D’ be a linear subspace of C?(IR?) containing all bounded twice differentiable functions
as well as linear and quadratic functions. Notice that the evolution given of original system (1.1)
corresponds to the generator

Liu,olé(x) 2 (f(t,2,u,v), Vo(r)). @.1)

This means that, given open-loop controls «(-) and v(-) and the motion of system (1.1) generated
by these controls, we have that, for every ¢ € D' £ C1(R9),

oo(r) — o(as)) = [ Liult). o@ote®)dt = [ (0 0(0), ), o(0), Tols(0))dr.

The auxiliary control system is described by the Lévy-Khintchine type generator L? acting
on ¢ € D? by the rule:

ERlu,oJ6(r) £ 546 (b2, ,0)V, V)o(e) + (1, 2,0,0), V)o()

(2.2)
+ [ o) = ota) = 0. Vol 1 () 1.0,
Here B; denotes the unit ball centered at the origin, 1 stands for the indicator function, whilst
the superindex a serves to underline the fact that L? determines the auxiliary system. The motion
according to this generator is defined using so called martingale problem (see Definition 5 below).
For the auxiliary control system, we consider the relaxed stochastic controls. In this case, a
player’s control is regarded as a stochastic process taking values in the set of distributions over
the control space. Below, if A is a metric space, then P(A) stands for the set of probabilities over
the set A. Furthermore, if a € A, then ¢, denotes the measure concentrated in a. The mapping
a — §, provides the natural embedding of A into P(A).

Definition 5. Let 5,7 € [0,7], s < r. We say that (Q, F, {F; }ic[s0, P, X, &, () is a control
process admissible for the generator L? on [s, ] provided that

1) (2, F,{Fi}esq, P) is a probability space;
2) X is a {F;}4c[s,-adapted stochastic process with values in R

3) & (respectively, () is {F;}ic[s,j-progressively measurable processes taking values in P(U)
(respectively, in P(V));

4) for any ¢ € D2,

B(X (1)) - / / / L2, o) (X (7)€ (du)( (dv)dr
is a {F; }ie[s,,-martingale.

The definition of the w-stability is a stochastic analog of the definition introduced in [29,
p. 205].
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Definition 6. We say that a lower semicontinuous function ¢: [0, 7] x R? — R is u-stable with
respect to the generator L? if o(T, z) = 9(T,z) on [0, T] x R? and, given s, € [0,T], s < r, one
can choose a filtered measurable > space (Qer, For {]—" "}els,) such that, for every y € R? and

S’f‘

v € V, there exist a probability pysg , processes Y;J , &v and a stopping time w.r. t. the filtration

{.ﬁs’r}te[syr] 7.7 taking value in [s, 7] U {+o0} pr0V1ded that

U1y (57, F {F " Yeton, ;5, szqf, £s7.48,) is a control process admissible for the generator
L? on [s, 7“}

(U2) Y (s) =y, Ppi-as.

(U3)
p(s,y) > Esn s

where ES " stands for the expectation according to the probability P5 . and the random

)V Y2
variable ¢;7, is defined by the rule
~ S/\'s T (48,7 ~8,T
925;:2 é g(Ty v /ysvr(Ty,v))7 7:1{3,1; € [57 T'], (23)
o Y(r) 73 = +oo.

The definition of the v-stability property is given as follows.

Definition 7. We say that an upper semicontinuous function ¢: [0,7] x RY — R is v-stable
with respect to the generator L? if (¢, z) < ¢(t, x) and, given s, € [0,T], s < r, one can choose
a filtered measurable space (Q°", F" {f . T}te[s /1) such that, for every y € R? and u € U, there
exist a probability P57 and processes yer . provided that

y,u? yyu?

(L1) (Qsr, Fsr {F "Velss yu,Y;J s O S:Z) is a control process admissible for the genera-
tor L?;

(L2) Vi (s) =, Py-ass

(L3) ¢(s, y) < IEZ”Z (r, Y;f;” (r)), where IES " stands for the expectation according to the proba-
bility PS -

To formulate the main results, put

Y(t,x,u,v) ZG (t,x,u,v) +/ yl2v%(t, 2, u,v,dy) >0
R4

b(t,z,u,v) = fo(t,x,u,v) +/ yr(t, x, u, v, dy). (2.4)
R\ B,

The function ¥ provides the measure of stochasticity of the generator L2, when the function b is
an effective drift in the auxiliary continuous-time game. Below we assume that the functions G*,
f® and v are continuous, when the functions ¥ and b are also bounded.

Furthermore, let ¢, denote the modulus of continuity of the function g w.r.t. 7, i.e.,

Se(€) £ sup{|g(t,«') — g(t,2")|: t € [0,T], 2',2" € R?, |l2" —2"| < e}

The main results of the paper are as follows.
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Theorem 1. There exists a constant C, dependent only on the dynamics of the original func-
tion f and a function . [0,+00) — [0,400) vanishing at zero such that, if ¢ is a u-stable
function for the generator L?, when

N(t,x,u,v) < €2 (2.5)

|b(t, 2, u,v) — f(t,x,u,v)| <e. (2.6)

for some positive € and every t € [0,T), v € RY, u € U, v € V, then, given an initial position
to € [0,T] x R? and a partition A of the time interval [ty, T), one can construct a first player
strategy with memory u® satisfying the following inequality: for any xy € RY,

TH(to, 20, u%) < ¢ (fo, 20) + 6 (Cie + au(d(A))). 2.7
This theorem obviously implies the following.

Corollary 1. If o is a u-stable function, and ¢ is such that (2.5) and (2.6) hold, then
Va1+ (to, ZE()) < g0+(t0, l’()) + §g(0*€>.

Hereinafter, the constant C, is the same as in Theorem 1.
The result for the second player’ strategy is formulated in a similar way.

Theorem 2. Assume that ¢~ is a v-stable function for the generator L? and ¢ satisfies (2.5),
(2.6). Then, given ty € [0,T] and a partition A of [ty, T|, there exists a second player’s strate-
gy 2 such that, for any o € RY,

T (to, w0, 0%) = ¢ (to, 20) — 65(Cie + . (d(A))). (2.8)
Corollary 2. If ©" is a v-stable function, and ¢ is such that (2.5) and (2.6) hold, then
Val™ (to, z0) > ¢~ (to, xo) — 54(Cie).

The following statement shows that the differential game with minimal cost, i. e., the differen-
tial game with the dynamics given by (1.1) and payoft (1.2) is equivalent to the differential game
with stopping governed by the first player (1.1), (1.3). For differential game (1.1), (1.2) we use the
feedback formalization proposed by Krasovskii and Subbotin. Despite its name, this formalization
uses a short history. Namely, the strategy of the first player is a mapping u: [0, 7] x R? — U,
whereas the second player’s strategy is a function v: [0,7] x RY — V. The players’ strategies
generate the motions as follows. If (¢, z¢) € [0,T] x R, u: [0,7] x R — U is a strategy of the
first player, A = {t;}i_, is a partition of the time interval [ty, T, then on [t4, ¢4, 1] the motion
satisfies the differential equation

%x(t) = f(t,z(t),uty, z(tx)), v(t)),

and the initial condition z(¢y) = x¢ where v(-) is a second player’s control. If we denote the set
of the corresponding motions by X (g, zo, 11, A), then the outcome of the first player is evaluated
by the quantity:
Jito, zo, m, A] sup min_g(t, z(t)).
z(-)eX1 (to,z0,u,A) t€lto,T]

The upper value of the game is defined as follows:

Valar(tm .To) é lnAf J} [t(]? Zo, U, A]
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Analogously, one can introduce the set of motions generated by the initial position (g, z), the
second player’s strategy v and the partition A X5(tg, xg, v, A). The second player’s outcome in
this case is determined by the formula

J2[to, o, v, A] £ inf min ¢(t,x(t));
f[ 0 0 ] x(-)EXQ(tQ,xQ,V,A) te[to,T]g( ( >)

whilst the lower value function is given by

Valy (t, 79) = sup J]%[to, xg, v, Al.
v,A

)

It is shown [24] that differential game (1.1), (1.2) has the value, i.e.,
Valg (to, z0) = Valy (to, o) = Valg(to, zo).

Theorem 3. Differential game (1.1), (1.3) has a value in the class of stochastic strategies with
memory. This value is equal to the value of differential game (1.1), (1.2).

This theorem is proved in Section 5.
§ 3. Control with guide strategies for the first player

In this section, we define the strategy of the first player that is used to prove Theorem 1. Let ¢
be a u-stable function, ¢, be an initial time, and let A = {¢;} ; be a partition of the time interval.
; A _ (UA TUA U.A UA A _UA i
Below, we introduce the strategy u™ = (Q%2, F72, {F 7 bepo.r), Py, u™, 7°7) providing an
estimate desired in Theorem 1. This strategy realize the concepts of control with guide and the
extremal shift rule first proposed by Krasovskii and Subbotin. To this end, for each ¢ € [0, 7],

x,y € R, let a(t, z,y), d(t,x,y) be such that

N o 1
r&ax(x -y, f(t,z,u(t, z,y),v) = gém r&ax(:v -y, f(t,z,u,v), 3.1

i - U == i - . .2
r;gn(:v y, f(t, x,u, 0(t, x,y)) rglemrgleax(x y, f(t, z,u,v) (3.2)

By the Measurable Maximum Theorem [1, Theorem 18.19], one can assume that the functions
and ¢ are measurable.

By definition of u-stability (see Definition 6), we choose, for the time interval [t,tx41], @
filtered measurable space ({fstie1 | Flitisr {ﬁf’“’tk“}te[tk,tk ..])- Without loss of generality, we

A~

T bt
assume that Fiete+r = F Fork+1

tkt+1
Set,
N-1
QU,A L X Otkste+1
k=0
In the following, we write elements of {2 as N-tuples (wp, ..., wn_1).

Fork=0,... N—1,t€ [tk,tk+1],1€t

k— N—
FUA 2R Pt g Bt @ Q) {7, Qe
i=0 i=k+1
Denote
U,A
FU& & Fps,
Now, let z(-) € C([to, T];R?). We will define P;](’.)A(A), uf(_)(t) and a stopping time TQZJ(’.)A
using an auxiliary stochastic process Yx(,)(~) and sequence of auxiliary stopping times 7,(.,
=0,..., N — 1 inductively as follows.
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1. Put Lo = Yo = IL‘(to), Y(to) = ZL‘(to) FOI', t e [to, tk], choose

uxA() (t) = a(tm X, yO)

Further,
£

vy = 0(to, o, Yo)-

Cto,t1

Since ™ is a u-stable function, there exist a probability P£°7t1 a stochastic control &2,

a motion Yt07t3 and a stopping time 7,01 such that conditions (U1)-(U3) are fulfilled for
y = xo and v = vy. Now, we set, for t € [to, t1],

x

Yl(,)(t, (Wo, ce 7WN71)) = ?to’tl(t, wo).
For A, € Flotr et

PR (Ag x Qih L Qv & Plof (4g),

Z0,v0

Notice that this formula defines PZ’.)A on fff’A. Finally, put
Tx(‘):()(w()? s 7wN71) = Ty(; v0<w0)'

2. Now, assume that we have constructed, for some [, t € [to,t;] and A € .Ft(l]’A, the probability
P;J(")A(A), the control u,(.(t), the motion Y:Tl(_) (t) and the stopping time 7., taking values
in [tg, t;] U {+o0}.

Denote x; = z(t;). Notice that @(t;, 2;, Y (t;)) and ©(t;, z;, Y (t;)) are random variables with
values in U and V respectively. If t € [t;,t,.1], then

uf() (t) £ ﬂ(tl, xr, Y(tl))

Recall that, for each Y € R, v € V, there exist a probability ﬁf;ﬁjtqf“, a stochastic control

2t S, ,
W a motion Y,y and a stopping time 7,4, Choosing

Yy, = le() (t[) and U = ﬁ(tlv Ty, yl)a

we define
Yoo ) £ Y0 te [t ti),

€z Yi,vi

Further, let ju,(.);(dy) be a distribution of Y} | (#;). For A; € FEU g =0,...,1, we put

o) thin
P;J(’.)A(Ao XX Ay x Ay x Qi i QI 2
/ Pg(i)A(Ao X . XA x Qi s Qlientiee QtN—l’tN]Yxl(,)(tl) =)
R4

Pt (A g 1(dy).

Y,y

Notice that one can extend the probability PZﬁ)A to the whole o-algebra .7-"t

I+1°
Finally, set

A tt
Ta()l = Ta(),l-1 A Tyf vllH.
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To complete the construction, we set

Tij(’.)A £ Ta(-),N—1 ANT.

Further, let us examine the properties of a motion corresponding to the strategy u® that is a
tuple (0, F, {Fi biefsn), P X, u, v, 7). For t € [t;, t141),

Yi(t) = Y)%(tl)(t)a (3.3)
0 (1) = o= 0(t, X (), Y (1)), (3.4)
() £ &5 s (3.5)

The proof of Theorem 1 is based on Lemmas 1-3.

Lemma 1. The following statements hold.

1. For each ¢ € D', the process

is a {Fi}iepo,m-martingale.

2. For each ¢ € D?, the process

BV (1)) - / / L2, 8 (0)]6(Y" (6))€ (6, du)db

is a {Fi}iep,,m-martingale.

The proof of the first statement is a simple consequence of the definition of generator L'
(see (2.1)), whereas the second statement follows from the very definition of strategy u and the
process Y1

Lemma 2. o' (tg, z0) > Eg(r,Y(7)).
P r o o f. First, notice that, if 7 takes values in [t, ;. 1), then

pb b (3.6)

T Ty )0t X (8),Y (t))?
1 St t
Y7) = Vit sex oy o (7) (3.7
Moreover, ™ (T, z) = (T, x).
Now, we use the backward induction by k to prove the following inequality:

e (1, Y () = E(g(m, Y (7)) Lreg 1 [ Fin)- (3.8)
We have that
g(r, Y () ey = 9(T, Y H(T) Lrer + g(7, Y (7)) Lrejper).-
Using equalities (3.6), (3.7) and condition (U3), we conclude that

E(Q(T7 Yl(T))ILTE[thhT] |‘FtN—1)
= E(LP(T’ v (T))ILT:T + 9(7-7 Yl(T))]]‘TG[tN—lvT) |‘EN—1)
<@ (tn-1, Y (tn-1))-
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This proves (3.8) for k = N — 1.
Assume now that (3.8) is fulfilled for £ = [ + 1. Notice that

E(g(Tayl(T))]lfe[tl,T]"’T_;fz)
= E(g<7—7 YI(T))ILTG[tl,tHJ) |]:tz> + E(g<7—7 Yl (T))ILTG[U-H,T] |]:tz)
= E<g<7—7 Yl (T))]lTG[tz,tzH)‘ftl) + E<E<g(77 Yl (T))’El+l)]17'€[tl+lvT] |‘Ftl)

Applying (3.8) for k£ = [ + 1, we arrive at the following inequality:

E(Q(Tv Yl (T))ILTE[thT] |‘th> S E(Q(Tﬂ Yl (7—))176[151,7514-1)'}%1) +
+ ]E((10+ (tHla V! (tlJrl))ﬂTG[tlH,T] ’Ftl+l>'

As above, using (3.6), (3.7) and condition (U3), we estimate the right-hand side of this
inequality from below by ¢ (¢;, Y(;)). This proves (3.8) for k = 1.
Since Y (to) = w0, estimate (3.8) implies the statement of the lemma. O

Lemma 3. The following estimate holds true:
E|X(r) = YH(7)|* < Cie® + au(d(A)).
P r o o f. We shall estimate the following quantity
E||X (T Aty) — YT A2

Notice that
E[[X (T Ato) =Y (T Ato)||* =0, (3.9)
E|X (T Aty) = YT Aty)||? = B X (1) — Y(7)|% (3.10)
We have that

X (7 A b)) =Y (T At 1P = [ X (T A ) = Y (T Aty) P
F X (T Atrgr) = X (T AP+ (YT Atga) = YT At ]2
+2X(TAt) =Y HT AL, X(T Atryr) — X(T A ty))
—2AX (T A te) = YT A ), YT Atgyr) — YT A L))
— 22X (T A tpy1) — X(T A1), YT Atggr) = Y (T A L)) (3.11)
<X (1 Aty) = YHT Ate)])?
+ 2/ X (T A tpyr) — X(T A )2+ 2V T Atgr) — YT A tg) |2
+2X(TAt) = YHT AL, X(T Atpyr) — X(T A ty))
—2AX(TAte) = YT At), YT Atryr) — YT A tg)).

Further, since (0, F, {F:}icto, 1), P, X, u, v, 7) is a motion corresponding to the strategy u®,
we have that

2
E||X (7 Atir) — X(r At)|? = IE’

/ T X () (), o)t
At (3.12)

<tk = tk)2ts[%pﬂ 1F (8, X (8), u(t), v(@)| < (trer — t) R

Recall that R is an upper bound of || f|| (see (1.4)).
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To estimate E||Y (7 A tgy1) — Y(7 A ty)]|%, notice that P-a.s.
YT Atra) = YHT A )P = V(T A trsa) Vit) = Y ()]
From [2, Lemma 13], it follows that
EIYL() = YA (00l < 22t — 1)+ an(t — t) - (£ — 1),
where o (+) is a nonnegative monotone function vanishing at zero. Using this, we obtain that

E[YH((7 Atrar) Vi) = Y (1)
< e (tpyr — tr) + o (trrr — ) - (ber — t)-

Hence
E|Y (7T Atryr) = YHT At |2 < 2(trgr — tr) + ar(tigr — t) - (Ergr — ta). (3.13)
Now let us consider the term
E(X (T Atg) = YT Aty), X (T Atryr) — X(7 Aty)).

We have that

TN 1

X (7 Atper) — X(r Aty) :/ £ X (), ult), v(t))dt.

Ntg

Notice that by construction w(t) on [tx, ;1] is equal to u(ty). Further,

1£(t, X (t)u(t),v(t) — f(tr X (te), ulty), v(t)]|
< (a2(tesr — ) + LI X (1) — X ()| (Frr1 — tr)-

Hence, using the inequality || X (¢) — X (¢)|| < R(t — tx), we obtain that

(X(7 At)=Y (7 A ), X(7 Aiyn) = X(7 A )

TN 41

_<X(7—/\tk)—Y1(7/\tk),/ f(T/\tk,X(T/\tk),u(T/\tk),v(t))dt>) (3.14)

TAtg
1
< loa(te—tisn)]” - (bsr = te) + SIX (T A L) =YV AL (Er — ).

Finally, let us evaluate the term

<X(T VAN tk) - YI(T AN tk)7Y1(T VAN tk+1) - Yl(T A tk)>
= <X(tk) - Yl(tk),yl((T A tk+1) \ tk) — Yl(tk»

By Lemma 1, we have that the process

om0 0) = [ [ Bl o@lisir i 0 0)E6.dujas
is a {7t befty e, ) -Martingale. Here

Lyr o (¥) 2 (Y1 — v,y — 4a).
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Using the Doob sampling option theorem [15, Theorem 7.12] for the stopping times (7 A
tr+1) V tg and t, we conclude that

E<X(T VAN tk) — Yl(T A tk), Yl(T A\ f}k+1) — Y1<T N tk)>
== ElX(tk),Yl(tk)(Yl((T VAN tk+1) vV tk))

(TAtg41)Vig ) . 1 o
_E / / L2, 8" () x oy 0y (Y ()€ (8, )t

tr U

& /(TAtk+l)Vtk / <X(7- N tk) _ Yl(T A tk), b(t, Yl(t), u, f)l(t)»él(t’ du)dt.

tr U

In the last equality we use the definition of the function b (see (2.4)). Evaluating the right-hand
side of this formula as above (see (3.14)) and using definitions (3.3), (3.4), (3.5), we conclude
that

‘E(X(T/\tk) Yi(r Ate), Y (7 Atgr) — YT A )

(T/\tk+1
—E/ / T/\tk (T/\tk),
T/\tk

b(T A, YT Aty),u, 0(T Aty, X (T Aty), YHT A tk))))gTAtk kL ) (&, du)dt

Yl T/\tk) e T/\tk

< ag(thrr — te)-(bepr — t) + §||X(T At) = YT A )P (trr — 1)

(3.15)
Here a3 is a vanishing at zero continuous function.
Combining (3.11), (3.12), (3.13), (3.14) and (3.15), we obtain the following estimate:
E|X (T Atpe)) =Y (T At )|? S E|X (7 Aty) = YT At + 28 (tes1 — tr)
12F / T X At — Y A ),
T;tkA by X (T A i), 6T Ay, X (T A ), Y (T Aty)), 0(t)))dt 516

(T/\thrl
—QE/ / T/\tk (T/\tk),
TN

b(T A e, YT A i), u, (7 A, X (T A1), YT A )N J(du)dt

Y1(rAtg), 01 (TAtg)

+4||X(T A\ tk) — Yl(T A\ tk)” (tk—I—l — tk) + Oé4(tk+1 — tk) . (tk+1 — tk).

In the previous formula, we denote

A

044(6) (o5} (E) + [042(6)]2 + Ofg(ﬁ).

Further, we have that

T/\tk+1
/ <X(T/\tk)—yl(7'/\tk)7

/\tk

FT Ay, X (T A tg), (T A, X (T A tg), YT Aty)), v(t)))dt

T/\tk+1
/ / T A tk (T A tk),
TN

b(T At YN (T A k), u, B A, X (7 A ), YT A t)YETAEN o1 (o (£ du)dt
(3.17)
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T/\tk+1
g/ (X(r A ty) — V(T A ),

/\tk,

FT Aty X (T Atg), 0(T Ay, X (T A tg), YT Aty)), v(t)))dt

(T/\thrl
—E/ / T/\tk Yl(T/\tk),
T/\tk

FO At YT A ) 0, 0(7 A, X (T A), YT AL))DEA N 51 () (E du)dt

+ (K + 12| X (7 Aty) = YT Ati)||P(tesr — ) + €2 /2(tegr — ti).
Here K is a Lipschitz constant for the function f.

Moreover, the construction of the functions @ and © implies that, for any ¢ € [0, 7], z € RY,
yeRL,ucUandveV,

<‘r - y7 f(t7 ‘CC7 i\L(t? x’ y)? U>> - <x - y? f(t7 x? u7 ﬁ(t7 .,,C, y))> S 0'
This together with inequalities (3.16), (3.17) yield the following estimate

E||X (7 Atyr) =Y (7 A i) 1P
<E|X(TAty) = YT At)||P(1+ se(tpyr — t) (3.18)
4 3% (tppr — tr) + as(tpgr — ) - (1 — Lr).

Here we put
x 22K +5.

Applying inequality (3.18) sequentially, we conclude that

E|X (TAtgp1) = YT A trga) |
< TE||X (1 Aty) — YT Ato)||? + 26T Te + eI Tay(d(A)).

Taking into account (3.9), (3.10), we obtain the statement of the lemma for
C, 2 3¢TT = 2ePE+TT (3.19)

and the function a,(¢) £ eI Tay(e). O

P ro o fof Theorem 1. The proof of the theorem directly follows from Lemmas 2 and 3. [J

§ 4. The second player’s strategy

The aim of the section is to prove Theorem 2. Assume that the function ¢~ is v-stable. The strat-
egy of the second player does not require the stopping time and realizes the Krasovskii—Subbotin
extremal shift rule with the stochastic guide governed by the Lévy—Khintchine generator [2]. For
the sake of completeness, we briefly describe the construction of the suboptimal strategy of the
second player based on the function .

Let o be an initial time and let A = {¢;}Y, be a partition of the time interval [t, T']. We will
construct the second player’s strategy v2 = (QV'4, FV:A, {EMA}te[o,T}, PIV(",)A, v?) that provides
the inequality formulated in the Theorem 2. To this end, we will use the functions @ and o
introduced by (3.1), (3.2). B _ _

Further, let filtered measurable spaces (Qf-t+1, Fliterr [, 0 1) be introduced in
Definition 7 for the function ¢~ and each time interval [ty,t;.1]. As above, we assume that
f‘tk,tkﬂ — f::;tfﬂ.

Set,

N—-1 _
QV,A Y X th7tk+1‘

k=0
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Fork=0,...,N —1,t € [ty, tgy1], define
k=1 _ - N-1 ~
.EV7A é ® ftivti+1 ® ka?tk+1 ® ® {®7Qti7ti+1}.
i=0 i=k+1

V,A & VA
FVA L FrA

Denote
Now, let z(-) € C([to, T];RY). We will define P;?_)A(A), Ug(t) using an auxiliary stochastic

process Y7 (+) inductively.
First, we put
Y (to) £ x(to).
Now assume that the auxiliary motion Yf(.) (t) is defined for all ¢ € [to, t;]. Denote

o 2 a(ty), w=Yih).

Set
oy (1) £ 0ty 1, m).
a(tlwxlayl)‘

4

Furthermore, denote
U
Since ¢~ is v-stable, there exists a probability Piiit', a motion Yya*" and a relaxed control of
such that conditions (L1)—~(L3) hold for s = ¢;, r = t;11, y = y;, u = w;. If

~tyti4n

the first player (y, ',
t € [t, ti41], we put N
V() 2 Y,
Ux(-)(t) 2 v = 0(t, 2, ).
j-:f:ff“, k=0,...,1,we

Further, denote by v,(.y,(dy) the distribution of y; = Y2( ) (t1). For Ay, €

set
P;?.)A(Ao X o x Al X Ay x Qittiee oy vty &
/ P;J(’.)A(AO XX Ay x QI Qi s QINCUIN Y (1) = )
Ra

(AD)Va() i (dy).

Dttt
Pyl,vz

Now we choose (€2, F, {F }iefss]: P> X, u, v, T) to be a motion corresponding to the strategy

v2. When t € [t;,1;41), set
2 Yy (),

Lemma 4. The following statements hold.

1. For each ¢ € D', the process
O (0) ~ [ Lulutr),o(loX ()i

to

is a {Fi }iejro,r)-martingale.
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2. For each ¢ € D? the process

o) = [ [ Lalut' @00 0)E 0. duya
is a {Fi }eejrom)-martingale.

The proof directly follows from the construction of the motion (2, F, {F; }iefs ), P, X, u, v, 7)
and the process Y2

Lemma 5. ¢~ (to, z9) < Eg(7,Y(7)).

The proof of this lemma is similar to the proof of Lemma 2.
Analogously, changing the players in the proof of Lemma 3, we obtain the following.

Lemma 6. E|| X (7) — Y?(7)[]? < C.e? + a.(d(A)).

Using this lemmas, one can prove Theorem 2 repeating the proof of Theorem 1.

§ 5. Equivalence between differential game with minimal cost and differential game with
stopping controlled by the first player

In this section we prove Theorem 3. Recall (see [24,29]) that the value function of differen-
tial game with the minimal cost (1.1), (1.2) is simultaneously u- and v-stable. The following
definitions hold [24,29].

Definition 8. We say that the lower semicontinuous function ¢: [0, 7] x R¢ — R is u-stable for
differential game with minimal cost (1.1), (1.2) if o(7',z) = g(7T', x) and, for every s,r € [0, 7],
s <r,v €V, there exists a solution of the differential inclusion

%x(t) € co{f(t,z(t),u,v): uec U}, z(s)=y (5.1)

such that
¢(s,y) = p(h,z(h)),
where
h =min{t € [s,r]: o(t,x(t)) = g(t,x(t))}

provided that this minimum is achieved and r otherwise.

Definition 9. An upper semicontinuous function ¢: [0, 7] x RY — R is v-stable for differential
game with minimal cost (1.1), (1.2) provided that o(t,z) < g(t,z) on [0, T] x R¢ and, for each
s,r € [0,T], s <r,y € RY one can find a function x(-) on [s, ] taking values in R? satisfying
the differential inclusion

d
%x(t) eco{f(t,z,u,v): v eV}, x(s)=y
such that

o(s,y) < o(r,z(r)).

The link between two definitions of u—stability presented in Definitions 6, 8 is given in the
following.
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Proposition 1. If a function ¢ is u-stable for differential game with minimal cost (1.1), (1.2),
then it is u-stable for the generator L.

P r o o f. To show the u-stability in the sense of Definition 6, it suffices to choose
Q5" 2 O([s, r];RY),
set ﬁf’r to be equal to the minimal o-algebra generated by the cylindrical sets

t1 ,,,,, tn _{ ()GC([S,T];Rd)Zx(tk)erlﬁk:l""’n}’

,,,,,

where t1,...,t, € [s, t], and 'y, ..., T, are Borel subsets of R?. Certainly, in this case we put
Fer & F&r. Further, let 237 (-) satisfy (5.1), and let £ be a relaxed control of the first player
such that

t yv / f ) yv ) ;:Z(t7du>7 l’Z:Z(S) = y
Recall that Q = C([s, 7]; R?). We set
Yor(t,w) £ w(t),

y77‘)

choose 5 »(t,w) be equal to &7 (¢) when w(-) = x37(+) and put
Prr 2,

xyo ()
Finally, let
o (w) 2 min{t € [s,r]: p(t,w(t)) = g(t,w(t)} Ar.
Clearly, (Qs w s {}" "Vepsa, P oy 55 7 0y) is a control process admissible for the gen-

y U Y Y, YL
erator L. Furthermore using Definition 8, we obtain that

Esnp(on Yor (Gon) = @b,y (h) < els.y),

Ty Ly Ty 1 Ly
where h is defined by the rule
h =min{t € [s,7]: (L, 2,7) = gtz )} AT
Hence, the function ¢ is u-stable for the generator L' in the sense of Definition 6. UJ
The following statement provides the link between two definitions of v-stability (Defini-
tions 7, 9).

Proposition 2. If the function p is v-stable for the differential game with minimal cost (1.1),
(1.2), then it is v-stable for the generator L' in the sense of Definition 7.

The proof of this statement is similar to the proof of Proposition 1 and, thus, omitted.

P r o o f of Theorem 3. Recall that the function Valy is u- and v-stable for differential game
with minimal cost (1.1), (1.2). By Propositions 1 and 2 the function Valj is u- and v-stable for
the generator L'. Letting the generator L? be equal to the generator L!, we have the constant &
equal to 0. Therefore, Corollary 1 gives that

Val+ (to, ZL‘()) S val()(to, ZEQ). (52)
Analogously, Corollary 2 yields the inequality
Valy(to, xo) < Val™ (to, xo). (5.3)

Since Val~ < Val™, inequalities (5.2), (5.3) imply the equality:
Va1+ (to, SC(]) = Valo(t(], .Z'()) = Val™ (to, .To).
This completes the proof. O
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§ 6. Isaacs—Bellman equation with additional inequality constraints

This section deals with sufficient condition on a function ¢ (¢, z) to be a u- or v-stable function.
Let p € {0,1,2} be the maximal order of the derivative involved in the definition of the
generator 2.

Definition 10. We say that the first player’s feedback strategy u’(t,z) is feasible for the
generator L? if, given s,r € [0,7], s < r, one can find a filtered measurable space
Qs For {F" hepsr) satisfying the following property: for each y € R, v € V, there ex-

ists an admissible for the generator L2 control process (", F* {.ﬁs’r}te[s,r], 13;5 ) }A/;J ,§y7ns Ov)
such that Y*7'(s) =y, P;/-a.s., and AZ:Z(t, du) = 6,00 x (1)) (du).

Theorem 4. Assume that p: [0, T] xR — R is differentiable w. 1. t. t and p times differentiable
w. r. t. x and satisfies the following conditions

e (boundary condition)
p(Tx) = g(T' x);

o ifp(t,x) < gt )
dp . 2
s <0 ,
5 + Znelélrglea‘;clzt [u, v]p < 0; (6.1)

o the strategy u' defined by the rule

: 2 — 27,8
glellr]lrglea‘;.{Lt [U,U](ﬂ(t,I) rlr)lea{;([’t [u (t,x),v]go(t,:v) (62)

is feasible.
Then, the function @ is u-stable.

P r o o f. The proof is by the verification arguments.

Let s,7 € [0,T], s < r. Using the assumption that u? is feasible (see Definition 10), we find
a filtered measurable space (Q2*", F*", {F;" }1c[s,)) providing the following property, for any
y € R% v, € V, there exists a controlled process (%", F>" {F" bepsr), Pv, Vi | A;;Z*,dv*)
such that V)7 (s) =y, P, -a.s., and é’;:z* (t, du) = Oz, x (1)) (du). Set

Ton, S inf{t € [s,r]: o(t, Y0 (1) = g(t, Y, (1)}
Further, denote R
Dy, = Fyu AT

Using the optional sampling theorem [15, Theorem 7.12], (6.1) and (6.2), we obtain that

o(s,y)
= E|o(dy5., Var (032.))

RN R TR

a8,
ﬁyw*

8g0 s s, £S,T
- [ (GRS o)+ [ Ll i o) ) ]
= E[¢ (0}, T2 051.))
1§S,T
RCES a o~ o~ o~
[ (G T )+ LR T (), ol T2 )]

7§s,r
R ~ vox 0 ~ ~
>E [90(19” ysr (%;Z)) — / (—w(t Y57 (1)) + min max L2 [u, v]o(t, Y5 (t)))dt}

Y,V Y,Ux at ’ Y,Ux uelU veV ’ Y,V

> EQO(’@S’T }/}s,r (725,7" ))

Y, V%7 7 Y, Ux \ " Y,Ux
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Since, @ (" yer (195 r ) =7 ysr (7,0.)) (see (2.3)), we conclude that the function ¢ is

YyUs ) 7 Y, Ux yv7yv

u-stable. O

The sufficient condition for v-stability is given in the same way.
First, we introduce the definition of feasible feedback strategy of the second player.

Definition 11. We say that the second player’s feedback strategy v°(¢,z) is feasible for the
generator L? provided that, given s,r € [0,T], s < r, one can find a filtered measurable space
Qs For {F" beps ) satisfying the following property: for each y € R?, u € U, there exists an
admiisible for the > generator L? control process (Q%", F*" {F;" hes s Pys " ,Y;J Oy SZ) such
that Y’ '(s) = v, PS r-a.s., and ”(t dv) = 60, x (1)) (dv).

Theorem 5. Assume that p: [0, T] x R? — R is differentiable w. r. t. t and p times differentiable
w. . t. x and satisfies the following conditions

e (boundary condition)

p(T'x) = g(T, x);
e foranyt e [0,T], v € RY,

o(t,z) < g(t, z);
e on [0,T] x R,

0
af (t,z) + max min L u,v])p(t, z) > 0;

o the strategy v° defined by the rule

b
rq?ea[;(runélr]l[,[ vjp(t, ) = gél[r]lL[ (t,x)]p(t, z)

is feasible.

Then, the function ¢ is v-stable.

The proof of this theorem is entirely similar to the proof of Theorem 4 and, thus, omitted.

We illustrate Theorems 1, 2 by two examples dealing with the auxiliary continuous time
stochastic games with stopping time determined by the first player.

First, let the dynamics be given by the stochastic differential equation

dX (1) = fo(t, X (1), u(t), v(t))dt + o (t, X (£))dW (L), (6.3)

Here W (t) stands for the Wiener process. This dynamics corresponds to the generator L? with
G(t,r,u,v) = oT(t,r)o(t,z) and v* = 0. Notice that the closeness conditions take the form

‘f(t7x7 u?“) - fa(t7x7 u7v)| S 67 ”O—(t7x)” S €.

Additionally, we assume Isaacs condition for system (6.3). This means that, for every ¢ € [0, T,
r,y € RY,

t = a(t
min max(y, f*(¢, ,u,v)) = maxmin{y, f*(t, 2, u, v))

Using Theorems 1, 2, we arrive at the following.

Proposition 3. If a function ¢ is differentiable w.r. t. t and twice differentiable w.r.t. x and
satisfies the following conditions
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d QD(T> ZL“) = g<T7 ZL‘),'
o(t,x) < g(t,x) on [0,T] x RY;

e on [0,7T] x R4
It ) @ 1
_ > (-
TR géglrgg;(Vg&(t x), [t x,u,v)) + 2(G(t,x)V,V><p(t,x) > 0;

if p(t,z) < g(t, x),

()QO(t,I) a 1
" + ggnr&ax(Vgp(t x), fUt, z,u,v)) + 2<G(t,x)v, Vip(t,x) < 0;

the strategies u(t, x) and v¥(t,x) defined by the rules

min max(Vp(t, ), f(t, z,u,v)) = mg;((V@(t,x),f“(t,:c,uu(t,x),v)),

ucelU veV

max min(Ve(t, z), f*(t,z,u,v)) = mei[r]l(Vgo(t,a:),f“(t,x,u,vh(t,x)»

veV uelU
are feasible.

Then, the function @ is u- and v-stable simultaneously.

The second example is concerned with the dynamics given by the Markov chain defined
on at most countable state space S C R? determined by the controlled Kolmogorov matrix
Qt,u,v) = (Qz4(t,u,v))zges. As above, we impose the Isaacs’ condition, that now takes the
form: for every t € [0,T], 7 € S, w € RY,

Iurlelll}l max <w ;(y —Z)Qz4(t, u, v)> = Iglea‘;cznellr]l <w ;(y —Z)Qz5(t, u, v)>
y 7

This Markov chain corresponds to the generator

L? [uv U]¢(f) = Z(¢(g) - qb(j))Qf,ﬂ(t? u, U)’ (64)

yes

Thus, the closeness conditions take the form

Z ||g - j||2Q£,g(t; U,U) S 62

=

> (- 2)Qag(t,u,v) — f(t,Z,u,v)| < e

yes

For this case, Theorems 1, 2 can be reformulated as follows.
Proposition 4. Assume that the function ¢: [0,T] x S — R satisfies the following conditions:
o o(1,2)=g(T,z), T €S;
o v(t,z) <g(t,z), te[0,T], z€S;
o foreverytc 0,7 and T € S,

d
() gD Quae(t,9) 2

yeS
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e for (t,z) € [0,T] x S such that p(t,z) < g(t, T),

d
gD+ iy ) Qugelt) <0
Y

Then ¢ is u- and v-stable simultaneously.

Notice that we do not add the assumption that for the case of generator given by (6.4) the
strategy is feasible. This fact directly follows from the Measurable Maximum Theorem [1,
Theorem 18.19].
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1O. B. Asepoyx
Annpokcumanusi QyHKIMU HeHbl TuddepeHIuaNbHOlil UTPHI ¢ KpUTEpHEM, 3a]aBAeMbIM YCJIOBHEM
MHUHUMU3AHA

Karoueswvie crosa: nuddepeHimanbHbIe UTPhI, CTOXaCTHYECKUH MTOBOBIPh, alIIPOKUMAITHS (DYHKITUHU TICHBI,
ypaBHeHue AMzekca—bemimana.

VIIK 517.977.8
DOL: 10.35634/vm210402

B crathe paccmarpuBaeTCs ammpoKCHMans (GYHKIMH [IEHbI aHTarOHUCTHYECKOW TU(GepeHIIMATLHON UT-
pbl C KpUTEPUEM, 3aaBAEMbIM YCJIOBUEM MUHUMU3ALMU HEKOTOPON BEJIMUYMHBI BJIOJIb PEAIM30BaBILICHCS
TPaeKTOPHUH, PEUIEHUAMH CTOXaCTUUYECKUX UTP C HEMPEPHIBHBIM BPEMEHEM U MOMEHTOM OCTaHOBKH, yIIPaB-
JSIEMBIM OJTHUM U3 UTPOKOB. OTMETHUM, YTO €CIIM B Kaue€CTBE BCIIOMOTATEIHHON UTPHI BEIOpAHA CTOXACTH-
yeckas nuddepeHmanpaas urpa, To ee QYHKINS IIEHBI 331aeTCs MapaboMIeCKUM YpaBHEHUEM BTOPOM
CTEIICHU B YaCTHBIX MPOU3BOMHBIX C JIOTIOJHUTEIBLHBIMU OTPAaHUUCHUSIMH B (JOpME HEPABEHCTB, B TO BpeMs
KaK I CITydasi BCTIOMOTATeIIbHOM WTPHI ¢ TUHAMUKOW, 3aaBacMOil MapKOBCKOM IETIhI0, (DYHKITHS IIEHBI
OIPEJIENIAETCSl CUCTEMOU OOBIKHOBEHHBIX NU(QepeHINaIbHbIX YPAaBHEHUH C JIOTOJHUTEILHBIMU OTPAHU-
yeHuaAMH. Pa3BuBaeMblil B cTaTbe METOJl allliPOKCUMAIIMH OCHOBAH Ha KOHIIEMIIMU CTOXACTHYECKOTO MOBO-
IIBIps, BIIEpBBIC MpeiokeHHoM B paborax H. H. Kpacosckoro n A. H. KorenbHHKOBOH.

duHancupoBaHue. VccnenoBanue BBIMONHEHO 3a cueT rpanta Poccuiickoro HaydHoro ¢oHma (IpoekT
Ne 17-11-01093).
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