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Introduction and background

The concept of statistical convergence was developed by Fast [21] and Steinhaus [35] inde-
pendently in the year 1951. The notion of natural density plays a prime role in the statistical
convergence of sequences. If A C N, then the natural density of A is denoted and defined by

5(A) = lim l’{kgn: ke A

n—oo N

Y

where the vertical bars indicate the cardinality of the enclosed set. A real valued sequence
x = (xy) is said to be statistically convergent to the number z if for each > 0,

5({1{:EN: |Tp — o] 277}) =0.

Later on, statistical convergence was further investigated and worked from the sequence space
point of view by Fridy [23,24], Salat [34], Tripathy [37,38], Connor [15], and many others [3-6,
26].

In an attempt to generalize the notion of statistical convergence, in 2012 Ozgiic and Yur-
dakadim [30] generalized natural density to quasi density and statistical convergence to quasi
statistical convergence as follows.

Let A be a subset of N. The quasi-density of A is given by

d.(A) = lim e

n—oo Cn

{k <n:ke A}’,
where ¢ = (¢,) is a sequence of real numbers satisfying the following properties:

cn >0 VnelN lim ¢, = oo and limsupc—n < 0. (0.1)

n—00 n n

It is clear that, for any two subsets A and B of N,

d.(N\ A)+.(A) =1 and A C B implies I.(A) < I.(B).
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A real valued sequence x = (z},) is said to be quasi statistical convergent to a real number z,
if for each ¢ > 0,

50({]{? € N: |z — zo| > 5}) =0.

Here, z is called the quasi statistical limit of the sequence = and symbolically it is expressed as

Tk 9 1. For ¢, = n, quasi density reduces to natural density and quasi statistical convergence
turns to statistical convergence. For more information on quasi statistical convergence, one may
refer to [25,29,39].

In another direction, Phu [31] introduced and investigated the concept of rough convergence
in finite dimensional normed spaces. It should be noted that the idea of rough convergence
occurs quite naturally in numerical analysis and has interesting applications there. In 2003,
Phu [32] further investigated the notion of rough convergence in infinite dimensional normed
space setting. Combining the notion of rough convergence and statistical convergence, in 2008,
Aytar [10] developed rough statistical convergence. But Akcay and Aytar [2] were the first who
introduced and investigated the notion of rough convergence of a sequence of fuzzy numbers.
For extensive study in this direction, one may refer to [7-9, 11, 16, 18, 28], where many more
references can be found.

On the other hand, in 1965, the notion of fuzzy sets was introduced by Zadeh [40] as one
of the extensions of the classical set-theoretical concept. These days, it has wide applications
in different branches of science and engineering. The term “fuzzy number” is important in the
study of fuzzy set theory. Fuzzy numbers were essentially the generalization of intervals, not
numbers. Indeed fuzzy numbers do not obey a couple of algebraic properties of the classical
numbers. So the term “fuzzy number”is debatable to many researchers due to its different
behavior. The term “fuzzy intervals” is often used by many authors in place of fuzzy numbers.
To overcome the confusion among the researchers, in 2008, Fortin et al. [22] introduced the
notion of gradual real numbers as elements of fuzzy intervals. Gradual real numbers are mainly
known by their respective assignment function whose domain is the interval (0, 1]. So, every real
number can be thought of as a gradual number with a constant assignment function. The gradual
real numbers also obey all the algebraic properties of the classical real numbers and have been
used in computation and optimization problems.

In 2011, Sadeqi and Azari [33] were the first to introduce the concept of gradual normed
linear space. They studied various properties from both the algebraic and topological points of
view. Further development in this direction has been taken place due to Ettefagh et al. [19,20],
Choudhury and Debnath [12, 13], and many others. For an extensive study on gradual real
numbers, one may refer to [1,17,27,36].

§ 1. Definitions and preliminaries

In this section, we present some definitions, notions and results that will be exclusively used
in the subsequent section. Throughout the paper, we use ¢ = (¢,,) to denote a real valued sequence
which satisfies (0.1).

Definition 1.1 (see [22]). A gradual real number § is defined by an assignment function
Rs: (0,1] — R. The set of all gradual real numbers is denoted by G(R). A gradual real number s
is said to be non-negative if, for every 0 < ¥ < 1, R3(v)) > 0. The set of all non-negative gradual
real numbers is denoted by G*(R).

Definition 1.2 (see [22]). Let * be any operation in R and suppose 51,5, € G(R) with assign-
ment functions Rz, and R;, respectively. Then, §; x 5o € G(R) is defined with the assignment
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function R;,.s, given by
Ripes(¥) = Rs, () x R, (), VO<d <1

In particular, the gradual addition $; 4+ S5 and the gradual scalar multiplication ¢s (¢ € R) are
defined as follows:

R is,(9) = R, (9) + R, (9) and Res(d) = cRs(9), VO <9 < 1.

Definition 1.3 (see [33]). Let X be a real vector space. The function || - [|g: X — G*(R) is
said to be a gradual norm on X if, for every 0 < ¥ < 1, the following conditions are true for
any o, yo € X:

(1) Ryaog (V) = R5(V) if and only if 2y = 0;

) Riuzolis (7) = [ Ryzq ) (V) for any 1 € R;

3) Rijzo+uollg (V) < Rijaollg (0) + Rijyolg (9)-
The pair (X, || - ||g) is called a gradual normed linear space (GNLS).
Example 1.1 (see [33]). Suppose X = R"™ and for xy = (21, 29,...,2,) € R", 0 < ¥ < 1, define
Il by ]

Riaolls (@) = €Y ],
i=1

Then, || - ||g is a gradual norm on R" and (R™, || - ||g) is @ GNLS.

Definition 1.4 (see [33]). Let © = (x;) be a sequence in the GNLS (X, || - ||g). Then, z is
said to be gradually convergent to zy € X if, for every 0 < ¥ < 1 and n > 0, there exists
N(= N,(9)) € N such that

Rl\xk*rollg(ﬁ) <mn, Vk>N.

Symbolically, z, 1% .

Definition 1.5 (see [20]). Let (X, || - ||g) be a GNLS. Then, a sequence z = () in X is said to
be gradually bounded if, for every 0 < ¢ < 1, there exists M = M («J) > 0 such that

Rzl (¥) < M, VkeN.

Definition 1.6 (see [31]). Let r be a non-negative real number. A sequence x = (xy) in a normed
linear space (X, || - ||) is said to be roughly convergent to z, € X with roughness degree r if, for
every ) > 0, there exists N = (NNV,)) such that for all £ > N,

|xe — ol <7+

Il

Symbolically, it is denoted as z;, —— .

Definition 1.7 (see [14]). Let z = (x;) be a sequence in the GNLS (X, || - ||g). Then, z is
said to be gradually quasi statistically convergent (in short, st,(G)-convergent) to zy € X if, for
every 0 <9 <1landn >0,

5c({k‘ € N: Ry ol (V) 2 77}) =0.

Symbolically, 25 4% 4.
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Definition 1.8 (see [14]). Let 2 = (x;) be a sequence in the GNLS (X, || - ||g). Then, z is said
to be gradually quasi statistically bounded if, for every 0 < ¢ < 1, there exists M (= M(¥)) > 0
such that

50({16 e N: 'R”mk”g(ﬁ) > M}) =0.

§ 2. Main results

In this section, we present the main results of the paper. We begin with the following defini-
tion.

Definition 2.1. Let x = () be a sequence in the GNLS (X, || - ||g) and r be a non-negative
real number. Then, x is said to be gradually quasi statistically roughly convergent (in short,
sty (G)-convergent) to 2o € X, if for every 0 < ¢ < 1 and n > 0,

50({1{ € N: Rjjay—ap g (0) = 7+ 77}) =0.

) ) sty(G)
Symbolically, we write z;, —— xg.
Here, z is called as the st/ (G)-limit of x, where 7 is the degree of roughness. For r = 0,
the above definition turns to the Definition 1.7. But our main aim is to deal with the case r > 0.

There are several reasons for such interest. Since a st,(G)-convergent sequence y = (y;) with

tq(G . .
Yk M xo often cannot be measured or calculated accurately, one has to deal with a quasi

statistically approximated sequence x = (z},) satisfying

o ({k € N: Rygyyyp (9) > 1}) = 0.

Then, no one can assure the st,(G)-convergence of x, but since for any > 0, the following
inclusion

{k € N: Ryyzolig () = 0} 2 {k € Ni Ry g (9) = 7+ 1}

holds, one can certainly assure the st (G)—convergence of x. We present the following example
to illustrate the above fact more preciously.

Example 2.1. Let X = R" and || - ||g be the gradual norm defined in Example 1.1. Consider the
sequence (c,,) defined by ¢, = %. Suppose y = (yx) in R" be defined as

(0,0,...,0,0.5), if k 1is not a perfect square,
Y= (0, 0,....0,05+2- “,?'“), otherwise.
Then, we have
0, if k 1is not a perfect square,
Ry, — ¥) =
lyk (0,0,...,0,0.5)“9( ) {%’ otherwise.

Therefore, for any n > 0, the following inclusion

{k € N: Ryjy,—0,0,..0,05)s (V) > 77} - {1, 4,9,.. }

holds and eventually v LLICN (0,0,...,0,0.5). But, for sufficiently large k, it is impossible to

calculate y;, exactly by computer but it is rounded to the nearest one. So, for the sake of simplicity,
we approximate y; by z, = (0,0,...,0, z) at the perfect square positions where 2 is the integer

satisfying z — 0.5 < y; < z + 0.5. Then, the sequence © = (x;) does not st,(G)-converge
... stg(G
anymore. But, by definition, x, L> (0,0,...,0,0.5) for r = 0.5. O
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So our main interest is to investigate the case 7 > 0. Therefore, we construct st (G)-limit set
of a sequence = = () denoted and defined as follows:

str (G
sty — LIM;(G) = {ZEQ e X: oy Mxo}.

stol
Theorem 2.1. Let (z) and (yx) be two sequences in the GNLS (X, || - ||g) such that xy, @), Zo

S 2
and yy. tq—(g)> Yo. Then,

: sty 1472 (g)
(1) xx +yp —— x0 + Yo, and

t\u\rl

(i) pxy, —— pxy forany u € R.

Srl ST2
Proof (i)Since,xktq—(g)>x0andyktq—(g)>y0,soforany0<19§1and77>0,

6.(P) = 0.(Q) = 0,
where

n Ul
P= {’f € N Ryay—aolg (V) = 71+ 5} and Q = {’f € N Ry, ol (V) = 72 + 5}-

Now, as the inclusion
(N\ P)N(N\ Q) C {k €N: Ry 490 otuo)lis (V) <71+ 72+ 1}

holds, so we must have

5c({’f € N: Rjatyn)—@otuolig (0) = 11 472 + ?7}) < 0 (PUQ) =0;

st((ZTIJFTQ) )
and consequently, z; + yp —— zo + Yo.

(i) If u = 0, then there is nothing to prove. So, let us assume that u # 0. Now as the
conditions

Riayaollg (V) < 71 and Ry —puaollg (V) < [ulry
are equivalent in gradual normed algebras, so the result follows. 0

Remark 2.1 (see [14]). Let (z) and (y;) be two sequences in the GNLS (X, || - ||g) such that

T, Stq—(g)> xo and yg Stq—(g)> Yo. Then,

. Stlq g
(@) 2+ v 2% 2y + yo, and
.. stq(9)
(1) pzy — pzy forany p € R.
Theorem 2.2. Let © = (1) be a sequence in a GNLS (X, || - ||g). Then,
diam (st, — LIM(G)) = sup{Ryy—.;(V): y, z € sty — LIM.(G), ¥ € [0,1)} < 2r.

In general, diam (stq - LIMJZ(Q)) has no smaller bound.
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Pro o f If possible, let us assume that diam (stq — LIMQZ(Q)) > 2r. Then, there exists yg, zg €
€ stq— LIM}(G) and 0 < 9 < 1 such that R, _.,;(Jo) > 2r. Choose 7 > 0 in such a manner

that R 19
)< lfmo) . 2.1)

Since, Yo, 20 € st, — LIM(G), so forany 0 < ¢ < 1 and n > 0, §.(P) = 0 and J.(Q) = 0,
where

P={keN: Rjp,—ys(¥) =r+n} and Q = {k € N: Rjg () > 7 +1n}.

By the property of quasi density, it is clear that the set (N\ P) N (N\ @) is non-empty. Take
p € (N\ P)n(N\ Q). Then, we have

Rilyo—z0llg (V0) < Ryjzp—yollg (Vo) + Rjjzy—20lig (Jo) < 2(r + 1),
which contradicts (2.1).

For the second part, suppose (zy) is a sequence in a GNLS (X, || - ||g) such that z, sta(9), Zo.

Then, for any 0 < ¢ < 1and n > 0,
5c<{7€ € N: Ry —wollg (V) = 77}) =0.

Now, for each yy € (zg + N(r,¥)) = {2 € X: Rypy—ayg(¥) < r}, the following inequality
holds:

Rizr—volle (V) < Ryjay—zollg (V) + Rjjzo—yollg (V) <1+,

whenever k ¢ {k € N: Ry, _s5(?) > n}. This shows that yo € st, — LIM?(G) and subse-
quently

sty — LIM(G) = (zo + N(r,9))

holds. Since, diam (zo + N(r,9)) = 2r, so, in general upper bound 2r of the gradual diameter
of the set st, — LIM](G) cannot be decreased anymore. O

Remark 2.2 (see [14]). Let x = (x;) be a sequence in a GNLS (X, || - ||g) such that z, Hal9), x0.
Then, x, is unique.

Theorem 2.3. 4 sequence x = (xy,) in a GNLS (X, || - ||g) is gradually quasi statistically bounded
if and only if there exists some r > 0 such that st, — LIM!(G) # 0.

Proof Letxz = (x;) be gradually quasi statistically bounded. Then, for every ¥ € (0, 1], there
exists M (= M(¥)) > 0 such that

6.(P) =0, where P ={keN: Ry, (¥) > M}.
Suppose
' = sup{Rjo, (V) k €N\ P, ¥ €[0,1)}.
Then, the set st, — LIM! (G) contains the zero vector of X and eventually
sty — LIMT (G) # 0.
Conversely, suppose that st, — LIM!(G) # () for some > 0. Then, for zy € st,— LIM.(G),
5c({k € N: Rijoy—aolg (V) 2 7+ 77}) =0

holds for any 0 < ¥ < 1 and n > 0. This means that almost all x;’s are contained in some ball
with any radius greater than r. Therefore, = is gradually quasi statistically bounded. U
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Theorem 2.4. Let © = (x) be a sequence in a GNLS (X, || - ||g). Then, the set st, — LIM](G)
is gradually closed.

Proof Lety = (yx) be asequence in st, — LIM;(G) such that

Then, for every 0 < ¥ < 1 and 7 > 0, there exists N(= N,(¢)) € N such that for all £ > N,
n
Rige-wlls (V) < 5

Choose ko € N such that kg > N. Then, Ry, —y)(J) < 3. On the other hand, since
(yx) C st, — LIM?(G), we must have

e <{k € N: Ripyyu 1o (9) 2 7 + g}) —0. (2.2)

Suppose p & {k € N: Rjay—y, g(9) =7+ £}. Then, Rya,y, |o(¥) <+ 3 and eventually
Riizy-10llg (9) < Ry -1y lg (V) + Ry —sollg (V) <741

This means that p ¢ {k € N: R4, _y,(¥) > r + n} and subsequently from (2.2) we obtain

50({1{ € N: Rjjay—yolg (V) = 7+ 77}) =0.

Hence, yo € st, — LIM}(G) and the proof ends. O

Theorem 2.5. Let © = (x1,) be a sequence in a GNLS (X, || - ||g)- If yo € sty — LIM°(G) and
y1 € sty — LIM?'(G), then

Yyr = (L= 7)yo + Ty1 € st, — LIMgEl_T)’"°+T’"1(g), for T €]0,1].

Proof Since yy € st, — LIM;°(G) and y; € st, — LIM'(G), so, for every 0 < ¥ < 1
and n > 0, 6.(P) = 0 and 0.(Q) = 0, where

P ={k€N: Ryp g () = 70 + 0} and Q = {k € N: Ry y5(¥) > 71+ 1}
Subsequently, for any & € (N\ P) N (N\ @),

Rizr—y-lig (V) Riler—volig () + TRy 116 (V)

(1-1)
(1 =7)(ro+n) +7(ri+n)
(1 =7)rg +71r1 + 1.

ANVAN

This proves that
{keN: Ryp_y () > (1 —T)ro+7r +n} CPUQ.

Now, since the quasi density of the set in the right-hand side of the above inclusion is zero, so the
quasi density of the set in the left-hand side is also zero. Hence, y, € st,— LI Mot (G). O

Remark 2.3. Let = (1) be a sequence in a GNLS (X, || - ||g). Then, the set st, — LIM(G) is
convex.
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Theorem 2.6. Let 1 > 0 and ry > 0. A sequence x = (xy) in a GNLS (X,| - |lg) is
Stg””ﬁ(g)-conve’”gem to xq if and only if there exists a sequence y = (yy) such that

strl 9)
Y —— g and Rz—y g (V) < 12

for all k € N.

S n
Proof Letus assume that y; tq—(g)> xo. Then, by definition, for any 0 < ¢ < 1 and n > 0,

6.(P) =0, where P ={k € N: Ry _ss(¥) =11 +n}.
Now, since Rz, —y, o () < 72 holds for all k € N, so for all k ¢ P,
Rpar—zollg (V) < Rjz—yilig (V) + Rijy—aollg (V) <71+ 72 +17.
This implies that
{k € N: Rjpy ao(®) =71 +ra+n} CP
and eventually by the property of quasi density,

5c<{’f EN: Ry —aog (V) Z 11+ 72+ 77}) =0.

sty 1772 (@)

Hence, z, ——— xy.
For the converse part, let us assume that

sté"l +r2) (g)

Tp ——— Zo- (2.3)
Define y = (yi) by
) {%, if Rz —aolg (V) < 1o,
k= To—Tg :
Ty + 2 R el ) otherwise.
Then, it is easy to observe that R, —y,|; (V) < 7o forall k € N.
Moreover,
0, if Rygy—aolg (V) < 1o,

Rjzp—=o|lg (V) — 12, otherwise.

R0l (V) = {

By (2.3), forevery 0 < ¢ < 1 and n > 0,
50({1{ € Nt Ry —aollg (V) 2 71472 + 77}) =0.
Now, as the inclusion
{k €N: Ryjayag)g (9) Z 11+ 1240} 2 {k € N: Ry (9) = 71+ 1}

holds, so we must have

5c({’f € N: Ry —rollg (V) 2 71+ 77}) = 0.

S n
Hence, y;. tq—(g)> xo and the proof ends. U
Remark 2.4. A sequence z = () in a GNLS (X, [| - [|g) is st{(G)-convergent to 7y € X with

roughness degree > 0 if and only if there exists a sequence y = () in X such that z;, —)StQ(g) Zo

and Rz, —y,| < r forall k € N.
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4. Yoyoxypu

Kpaszucrarucrnueckn rpydoasi cXoAMMoOCThb IOCJIEI0BATEILHOCTEl B IPaayajJbHbIX HOPMHUPOBAHHBIX
JIMHEHHBIX MPOCTPAHCTBAX

Kniouesvie cnosa: TpagyalbHOE 4YHCIO, TpagyalbHOE HOPMHMPOBAHHOE JMHEHHOE MPOCTPAHCTBO, KBa3H-
IJIOTHOCTb, StZ(Q)-CXOHI/IMOCTB, stZ(g)-npenenLHoe MHO>ECTBO.

VIK 517.52
DOI: 10.35634/vm240406

B Hacrosmeil crarbe MBI M3J1aracM HOBOE TOHSTHE KBAa3UCTATHCTUUECKH I'pyOOH CXOIMMOCTH B Tpaiy-
aJbHBIX HOPMUPOBAHHBIX JMHEWHBIX IPOCTPAHCTBAaX. Mbl yCTaHABIMBAEM BAXKHBIE PE3YJIbTATbI, KOTOPbIE
MIPEACTaBISIFOT HECKOIBKO (PyHIaMEHTAIBFHBIX CBOMCTB 3TOTO HOBOTO MOHATHS. MBI Tak)Ke BBOIWUM IOHS-
THE stg(g)—npe):[eanoro MHOXXECTBA U JIOKa3bIBAEM, YTO OHO I'PALyalIbHO 3aMKHYTO, BBIIYKIIO M UIPAECT
BaXXHYIO POJIb JJIs1 KBa3UCTAaTUCTUYECKOW OIpPaHMYCHHOCTH IOCIEIOBATEIBHOCTH B I'pajyajlbHOM HOPMH-
POBAHHOM JIMHEMHOM IIPOCTPAHCTBE.

dunancupoBanmue. ABTOp BbIpaxkaeT OmaromapHocTh Komuccnn mo yHUBepcHUTETCKMM TpaHTaM WMHmnum
3a punancupopanue crunenauii no cxeme UGC-SRF (F. No. 16-6 (DEC. 2018) / 2019 (NET/CSIR)) Bo
BpeMsl NTOJITOTOBKYU JJAHHOM CTAThU.
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