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In control problems, construction and investigation of attainability domains and their analogs are very
important. This paper addresses attainability problems in topological spaces. Constraints of asymptotic
nature defined in the form of nonempty families of sets are used. The solution of the corresponding
attainability problem is defined as an attraction set. Points of this attraction set (attraction elements) are
realized in the class of approximate solutions which are nonsequential analogs of the Warga approximate
solutions. Some possibilities of applying compactifiers are discussed. Questions of the realization of
attraction sets up to a given neighborhood are considered. Some topological properties of attraction sets
are investigated. An example with an empty attraction set is considered.
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Introduction

We consider extension of attainability problems with constraints of asymptotic nature. In many
control problems, stability of attainability domains under perturbation of standard constraints
is absent. In particular, a given stability may be absent with respect to weakening of these
constraints. This case is interesting since we obtain some prize under small constraints violation.
We note that it is often difficult to give concrete weakening of constraints. Usually, we have a
system of weakening constraints (we keep in mind weakening of the initial constraints). In these
cases, an asymptotic variant of the setting is natural. Namely, we consider all systems of weakened
constraints as a unit. Of course, the Warga approach [1, ch.III] can be used as such a variant.
But more general variants are possible. Namely, we can omit from consideration any initial
nonperturbed constraints. It is possible to introduce constraints of asymptotic nature immediately.
Such constraints can be introduced as a nonempty family of sets; see [2-4] and references therein.
In addition, this construction is more informative in the case when the corresponding family is
directed. But, in the following, we consider the family of the general form. This family is
interpreted as a variant of constraints of asymptotic nature. We obtain very general setting.

In connection with the above-mentioned approach to definition of constraints of asymptotic
nature, we introduce asymptotic solutions similar to the approximate solutions of Warga (see [1,
ch.III]). In our approach, we use two variants of the corresponding definition: nets and filters.
For both variants, our solutions are realized (as objects) with respect to “asymptotic” constraints
considered as a whole. But, in the given investigation, we use only nets. In addition, we associate
some results to any “asymptotic” solution. The totality of such results form an attraction set
(AS). The construction of this AS is our basic aim. For realization of this aim, we use the special
instrument; namely, we use compactifiers (see [2]). In this connection, we present the necessary
and sufficient conditions for existence of the corresponding compactifier.

Later, we discuss some properties of AS. In particular, we show conditions guaranteeing
non-emptyness of AS. Moreover, we consider questions concerning the realization of AS up to
arbitrary neighborhood (of this AS). We give some generalization of statements about represen-
tation of the basic AS in terms of a continuous image for auxiliary AS.
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§ 1. General notions and designations

We use standard set-theoretical symbolics (quantifiers, propositional connectives, and so on);

2 s equality by definition. We take an axiom of choice. We call a family any set for which all
elements are sets also. For every objects « and 3, by {«; 5} we denote the set containing v and
£ as own elements and not containing no other elements. Then, for every object x, in the form of
{z} 2 {z; x}, we obtain a singleton containing only x. For any objects u and v, we suppose that
(u,v) 2 {{u};{u;v}} (see [5, ch.1I, § 2, (1)]) is the ordered pair with the first element v and the
second element v. If z is an ordered pair, then by pr,(z) and pr,(z) we denote the first and the
second elements of z, respectively; z = (pry(z), pry(2)).

If H is a set, then by P(H) we denote the family of all subsets of H and suppose P’'(H) 2
P(H) \ {0} (the family of all nonempty subsets of H); moreover, by Fin(H) we denote the
family of all finite sets of P'(H) (so, Fin(H) is the family of all nonempty finite subsets of H).

Of course, a family can be used as H.
If H is a set and H € P'(P(H)), then

Cu[H] 2 {H\ H: H € H} e P (PH))

is the family dual with respect to . In particular, a topology can be used as H. If A is a nonempty
family and B is a set, then

(A 2{ANB: Ac A e P(P(B) & ([A(B) 2 {Ac ABC A} € P(A)).

For every sets A and B, by B4 we denote the set of all mappings from A into B (for f € B4
and a € A, in the form of f(a), we obtain the value of the mapping f at the point a, f(a) € B);

under g € B4 and C' € P(A), we suppose that g'(C) 2 {g(x) : z € C}, ¢g*(C) # 0 for C # .
So, we introduce the image of a subset of domain of the mapping ¢g. Let R be the real line,

NZ2{1;2;..},andT,s 2 {k e N|k < s} Vs € N.
If X is a nonempty family, then

{N}(X)={ (] X: K eFin(¥)} (1.1)

XeK

((1.1) 1s the family of all finite intersections of sets of X’; of course, (1.1) is the family of subsets
of the union of all sets of X). If X' is a nonempty family, then

(Cen)[X] = {Y e P'(X)| (| Y # 0 VK € Fin(Y)} (1.2)

YeK

(we introduce the family of all nonempty centered subfamilies of X’). In the following, we use
nets. Therefore, we introduce some designations connected with nets.

If H is a nonempty set and <€ P(H x H), then, for every h; € H and hy € H, we suppose
that

(h1 = ha) <L ((hy, ho) €=).

In these terms, we introduce preorders in H. Namely,

(Ord)[H] £ {=€ P(H x H)|(z = 2 Vz € H) & (Vz; € HVz, € HVz; € H
(21 2 22) & (22 2 23)) = (21 2 23))}
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is the set of all preorders in H. Then
(DIR)[H] 2 {€ (Ord)[H|Vz e HVy e HIz e H: (x <2)&(y = 2)}

is the set of all directions in H. If H is a nonempty set and Ce (DIR)[H], then (H,C) is
a (nonempty) directed set; moreover, if Y is a set and f € Y™, then we consider the triplet
(H, C, f) as a net in Y. In the following, the expression

Ay S[M # (] (1.3)
replaces the phrase “there exists a nonempty set M. Therefore, for every set 7', the expression
IpS[D # 0] IC € (DIR)[D] If € T - ... (1.4)

replaces (in fact) the phrase “there exists a net (I, C, f) in the set 7" such that ...”; of course, in
(1.3) and (1.4), instead of M, D, C, and f, arbitrary symbols can be used. These expressions be
will used under description AS in a topological space (TS). If LL is a set, then, in the form of

BILI 2 {L£ € P(P(L)WLi € LVLy € L3Ls € L: Ly C LiN Ly},

we obtain the family of all nonempty directed subfamilies of P(LL).

Elements of topology. By (top)[H] we denote the family of all topologies [6, ch. 1] on a set
H.If 7 € (top)[H], then (H,7) is a TS. We use standard notions of 7}-space and T5-space (for
example, see [0, ch. 1]). We note the compactness property [6, ch. 3]; for this, we suppose that

(c — top)[H] = {r € (top)[H] |Y¢ € P'(r) (H = | JG) = (3K € Fin(¢): H= | ] )}

Ge¢ GekK

(the family of all topologies of (top)[H]| converting the set H in a compact TS). As usual, for
every TS (X, 7) (so, X is a set and 7 € (top)[X]) and Y € P(X), we find that 7|y € (top)[Y]
and (Y, 7|y) is a subspace of TS (X, 7). In the form of

(r — comp)[X] £ {K € P(X)| 7| € (c — top)[K]},
we obtain the family of all compact (in TS (X, 7)) subsets of X; moreover,
(r — comp)°[X] £ {H € P(X)|3K € (r — comp)[X]: HC K}

is the family of all subsets of X precompact in TS (X, 7). For every TS (X, 7), in the form of
Cx[r], we obtain the family of all subsets of X closed in the sense of (X, 7).
If (X,7)isa TS and M € P(X), then

N°IM] 2 {G e r|M c G}

is the family of all open neighborhoods of M in TS (X, 7). For z € X, suppose that N°(z) 2

N[{z}] = {G € 7|z € G}; then, N, (z) £ {YV € P(X)[3G € N°(z) : G C Y} is the family of
all neighborhoods of z in TS (X, 7). If (X, 7) isa TS and M € P(X), then

A(M,7) 2 {z e X|GNM #DVG € N(2)} = {z € X|HN M # 0 VH € N.(z)}

is the closure of M in (X, 7).
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Convergence of nets. At first, we take the following statement: if D and T are nonempty
sets, _€ (DIR)[D], and f € TP, then
(T — ass)[D: ; f] 2 {M € P(T)|3d, € D Vd» € D 05
(di C do) = (f(d2) € M)} € P'(P'(T))

is the filter [6, Section 1.6] (in T) associated with the net (D,C, f). Then, we introduce the
standard Moore—Smith convergence: if (T, 7) is a TS, (D, C, f) is a net in the set T (namely, D
is a nonempty set, C€ (DIR)[D], and f € TP), and t € T, then

(D,C, f) <5 ) €5 (N(t) C (T — ass)[D; C; f)). (1.6)

So, by (1.5) and (1.6) the Moore—Smith convergence is defined.
If (X,71), X #0,and (Y, 72), Y # 0, are two TS, then
C(X7 T17Y7 T2) é {f € YX‘fil(G) S VG e 7-2}

(the set of all (71, 75)-continuous mappings from Y ); moreover, we suppose that (see [7, (2.8.1)])

A
Ca(X,1,Y,m) = {f € C(X,71,Y.m)|f1(F) € Cy[n] VF € Cx[n]}
obtaining the set of all closed (and continuous) mappings from (X, 1) into (Y, 7).

§ 2. Attraction sets: general representations

In this section, we discuss general notions connected with AS in the fixed TS (X, 7). So, X is
a nonempty set and 7 € (top)[X]. Moreover, in this section, we fix a nonempty set F; elements
of F are considered as usual solutions. Finally, in this section, we fix a mapping f € X%. If
E € P'(P(F)), then
(as)[E; X; 73 £ €] 2 {x € X|3pS[D # 0] 3C € (DIR)[D] 3g € E® : 2
(€ C (B —ass)[D; Cig)) &((D,E,fog) — x)}

(as usually, the symbol o is used for composition of mappings). We consider the set (2.1) as AS
in (X, 7) corresponding to the aim operator f and constraints of asymptotic nature defined by €.
Of course, in (2.1), we can use the variant £ € S[E]. In addition (see [7, (3.2.8)]), under £ € S[F]

(as)[E; X; 73 £5 &) = ﬂ c(fH (%), 7). (2.2)

Ye€

This case is basic since, for every family & € P'(P(E)), we have the property {N};(€) € G[E].
Moreover,

(a5)[B; X 73 £; €] = (a5) [B; X; 73 £ {1} ()] VE € P/ (P(E)). (23)
So, by (2.2) and (2.3) we obtain the following representation of AS in the general case:

(as)[B;X;mifi €] = () d(f'(),7) VE € P(P(E)). (2.4)

se{n}(6)

In this article, we investigate properties of AS (2.4). We note that employment of nets in (2.1)
(or filters, as in [4]) is essential; in this connection, see [8]. Conditions for exhausting sequential
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realization of AS are presented in [9, Proposition 3.3.1]. For the AS constructing, compactifiers
[2] can be used. A more general variant is indicated in [7, Proposition 3.3.1], where an almost
perfect operator for extension of f (see [6, Section 3.7]) was used. In this investigation, we do
not consider this more general scheme, but focus on compactifier application.

From (2.4), the obvious property follows:

(as)[E; X; 7; 15 &] € Cx|[r] VE € P'(P(E)). (2.5)

We recall that f1(F) = {f(z) : = € E} € P'(X) (image of FE under operation f). From (2.5),
we find that

(1 € (¢ —top)[X]) = ((as)[E; X; 7;f; E] € (7 — comp)[X] VE € P (P(E))).
Proposition 1. The following equivalence property takes place:

(AxS[K # 0] 39 € (c — top)[K] Im € K¥ g € C(K,0,X,7) :

f=gom) <= (f'(F) € (1 — comp)’[X]). (2.6)

Proof Let the expression on the left-hand side of (2.6) be true. Fix a nonempty set
K, ¥ € (c — top)[K], m € K¥, and g € C(K,9,X, ) with the property f = g o 7. Then
g'(K) € (1 — comp)[X] (see [6, Section 3.1]). In addition,

f'(E) = g'(m'(E)) C g'(K).
So, f1(E) € (1 — comp)?[X]. We obtain the following implication:

(3 S[K # 0] 39 € (c — top)[K] Im € K¥ Ig € C(K,9,X,7):

f=gom)= (f'(E) € ( — comp)’[X]). (2.7)

Let f'(E) € (7 — comp)?[X]. Then, for a (compact) set K € (7 — comp)[X], the inclusion
f1(F) C K is realized. Of course, K # () and 7|k € (¢ — top)[K]. So, (K, 7|k) is a nonempty

compact space for which f € KZ. Suppose that n € X¥ is defined by conditions 7(x) 2 xVxe
K (we use the inclusion map into X). Of course, f = 7 o f, where 7 is the continuous mapping
from compact space (K, 7|k) into (X, 7) :

neCK, 1k, X, 1)

(namely, under G € 7, we find that = '(G) = KN G € 7|k). So, we find that (K, 7|, f,7) is a
collection with required properties. Therefore, the implication

(£1(E) € (7 — comp)"[X])
— (AxS[K #0] 3 € (c —top)[K] Im € K¥ Ig € C(K,0,X,7): f=gom)

is established. Using (2.7), we obtain (2.6). 0

In [2], the following notion was introduced: the collection (K, 9, m,g) for which K is a
nonempty set, ¥ € (c—top)[K], m € K¥, g€ C(K,9,X,7),and f = gom, was called (in [2])
a compactifier. So, in Proposition 1, we obtain the necessary and sufficient conditions for the
compactifier existence. In this connection, for a nonempty set S, we introduce

FUS;X; 7] £ {f € XS|F1(S) € (7 — comp)’[X]} € P'(X5) 2.8)
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(all constant functions are elements of the set (2.8)). We note the obvious property: for every
nonempty set S, f € S¥ and g € FY[S; X; 7]

gofeF[E;X;r].
Of course, from (2.8) and Proposition 1, we obtain

(3 S[K # 0] 39 € (c —top)[K] Im € K¥ Ig € C(K,9,X,7) :

f=gom) < (f € FY[E; X;7]). 29)
We note that V.S € P(X) VF € [Cx[7]](S) VA € P(S)
cl(A, 7|r) = cl(A, 7); (2.10)

(2.10) is a simple corollary of definitions. We use (2.10) in the next section; in this section, we
will change (X, 7) and f.

§ 3. Transformation of attraction sets

In this section, we fix only a nonempty set . We consider £ as the set of usual solutions.
Recall that for every TS (Y, 7), Y # (), and f € Y*

[Cy[TII(f1(E)) ={F € Cy[7llf'(E) C F} € P'(Cy[r]);

in addition, F # () VF € [Cy[7]](f}(E)).
Proposition 2. If (Y, 7)isa TSwithY # 0, f € Y¥, £ € P'(P(E)), and F € [Cy[7]](f}(E)),
then
(as)[E; Y573 f3 €] = (as)[E; Fi 7|ps /5 €] € Cr[r|r].

The corresponding proof is carried out by obvious combination of (2.3), (2.4), and (2.10). So,
we can turn to a closed subspace without changing AS. In this connection, we recall that, for a
Ty-space (H,7), H # (), and a set S € P(H), the inclusion [(7 — comp)[H]](S) C [Cy[7]](S)
holds. As a corollary, for a Ty-space (Y,7), Y # 0, f € Y¥ and K € [(7 — comp)[Y]](f}(E)),
in the form of (K, 7|k), we obtain a nonempty compactum: K # ), 7|x € (¢ — top)[K],
and (K, 7|k) is a Ty-space. On the other hand, by Proposition 2, for a nonempty 75-space
(Y,7), feYE £ e P(P(E)),and K € [(T — comp)[Y]](f!(E)), we find that

(as)[E; Y 7; f; €] € Ck[r[K]
and, as a corollary, the property
(as)[E; Y75 f; €] € (7| — comp)[K] 3.1
takes place. In addition, fora TS (Y,7), Y #0, and f € Y
([(r = comp)[Y]|(f1(E)) # 0) <= (f € F|E:Y;7]). (3.2)

As a corollary, for a nonempty Ty-space (Y,7), Y # 0, f € FYE;Y; 7], £ € P'(P(FE)), and
K € [(7 — comp)[Y]](f'(E)), the inclusion (3.1) is obtained.

Proposition 3. If (Y, 7) is a nonempty Ty-space, f € FU[E;Y; 7], and £ € P'(P(E)), then

((@s)[E; Y575 f; €] # 0) <= (€ € (Cen)[P(E))).
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Proof By (2.3)and (2.4) we find that
(@8)[E; Y573 [ = (a8)[B; Y7 [ {nh(E)] = (] (' (%), 7). (3.3)
e{n}y(6)
Let £ € (Cen)[P(E)]. Then, = # ) V= € {N};(€). Using (3.2), we choose and fix a set
K € [(r — comp)[Y]](f'(E)).

Then, 7|k € (c — top)[K] (and, what is more, (K, 7|k) is a nonempty compactum). Since (Y, 7)
is a Ty-space, the property K € [Cy[7]](f!(E)) takes place. By Proposition 2,

(@8)[B; Y73 /€] = (as)[B; Ks 7l f; €] = () d(f(D), 7l) (3.4)
Te{n}(€)

(we use a representation similar to (3.3)). In addition,

F 2 (®),7lx) : B € {N}(E)} € P(Cxlrlx]).
Then, {N}4(€) € S[E]. As a corollary, we find that F € (Cen)[Cx|[7|k]] and therefore
(| (D) rlk)= [ F#0 (3.5)
Ze{n}s (&) FeF

(we use compactness of TS (K, 7|k )). From (3.4) and (3.5), we find that (as)[E;Y;7; f; E] # 0.
So,

(€ € (Cen)[P(E)]) = ((as)[E; Y5 75 f5 €] # 0). (3.6)
Let (as)[E;Y;7; f; E] # 0. Then, by (2.4),
A(fH(X), 1) #0 VE € {n}(E).
As a corollary, ¥ # 0 VX € {Nn}4(E). Therefore, £ € (Cen)[P(E)] (see (1.1), (1.2)). So,
implication
((as)[E; Y575 f3 €] # 0) = (€ € (Cen)[P(E)]) (3.7

is established. From (3.6) and (3.7) the required statement follows. U
Now, we consider the question of realization of AS up to given neighborhood. These state-
ments are similar to those considered in [7, Section 3.6].

Proposition 4. If (Y, 7) is a nonempty Ty-space, f € FE;Y; 7], and € € B|E)], then
N2l(@s)[B: Y37 £5€) = | N2 (2), 7))
Te
P ro o f. By [7, Proposition 3.6.1] we obtain the inclusion
N (as)[E5 Y57 1 €] < | NP[el(f1(3). 7). (3.8)
Ye&
On the other hand, for ¥ € £ and G € N?[cl(f!(X), 7)], the following chain of inclusions holds:

(as)[B; Y575 f; €] C A(f1(2),7) C G,

see (2.2). As a corollary, G € N°|[(as)[E;Y;7; f;£]]. Since the choice of 3 and G was arbitrary,
the inclusion opposite with respect to (3.8) is established. UJ

From Proposition 4, we find that, for every nonempty Th-space (Y,7), f € FE;Y;7], £ €
BIE], and G € NY[(as)[E;Y; 73 f; €]

IV € & (as)[E;Y;7; f; €] C d(fH(X),7) CG. (3.9)



576 Constraints of asymptotic nature and attainability problems

Proposition 5. If (Y, 7) is a nonempty Ty-space, [ € FAE;Y;7|, £ € P'(P(E)), and G €
NY((as)[E; Y5 75 f; €], then

3 € {N}(E) : (as)[E;Y ;75 f; &) Cel(fH(%),7) CG.

The corresponding proof is an obvious combination of (2.4) and (3.9). Moreover, we obtain
the obvious

Corollary 1. If (Y, 1), f, £, and G correspond to Proposition 5, then 3= € {N}4(£) VX €

{N}4(6)
(X CE) = ((as)[B; Y7 f3€] C (f(B), 7) € G)).

Proposition 6. If (Y, 7) is a nonempty Ty-space, £ € (Cen)[P(E)|, and f € FE;Y; 7], then
(as)[E; Y573 f; €] € (7 — comp)[Y] \ {0}
The proof is carried out by the immediate combination of (3.1) and Proposition 3.

Proposition 7. If (Y, 7) is a nonempty Ty-space, f € YE and € € P'(P(FE)), then

A 2)7) € @B Y37 f5]

se€

The proof follows from definitions of Section 3.

Corollary 2. If (Y, 7) is a nonempty TS, f € Y¥ and K € Fin(P(F)), then

(as)[E; Y75 £ K] = cd(£1([) 2). 7).

Sek
P roof Recall that (] X € {N};(K); therefore, by (2.4)
sek
(as)[E; Y75 f5 K] = (as)[B; Vi 75 f5 {0 }(K)) € e(F1([) 2). 7).
Sek
Using Proposition 7, we obtain the required equality. U

Proposition 8. If (Y, 7)) and (Z, 1) are two nonempty TS, £ € P'(P(E)), f € Y¥ and
g€ C(Y,1,Z 1), then

9 (as)[B; Y715 f1€]) C (a8)[E; Z3 oy g 0 f1 €] (3.10)
Proof. Recall [7, Proposition 3.3.1]. Now, we give a small generalization. For this, we

note that by (2.4)
@)[E Y 7 fE] = () c(f(D).m).

e{n}s(€)
Therefore, using continuity of g, we obtain that
g (@B Y;m; fiE) () g'A(f E) ) () g (f(E),m) =
Se{n}s(&) Se{n}s(&)

= (] d((goH'(E),7) = (as)[E; Z;mai g o [ ).

Ze{ﬁ}u(g)
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Proposition 9. If (Y, 1) is a nonempty compact TS, (Z,7,) is a nonempty Ti-space, f € Y,
g€ CulY,m,Z,73), and € € B|E], then

(as)[B; Z; s g o f1 €] = g ((as)[E; Y57 £ €]). (3.11)
P r o o f. We use Proposition 8; namely, we have the inclusion (3.10). Moreover, we use the

property similar to (2.2). In this connection, we note the following obvious statement: for every
m € N and mapping

there exists X € £ such that
I ab (3.12)

((3.12) is established by induction on m). So, by (2.2)

(as)[E; Z;my g0 f1E] = ﬂ c((go fHN(E), 7). (3.13)

Ye&

Let 2. € (as)[E; Z; 75; g o f; ). Then, under & € &, by (3.13) we obtain
z € cl((g0 ))'(T), ),
where cl((g o f)1(), 1) = cl(g*(f1(E)), 72) = ¢*(cl(f1(X), 1)) by the choice of g; therefore
A(f1(2), ) Ng ' ({z}) € Cy[n] \ {0}. (3.14)
We introduce the following (nonempty) family
CE{A(/ (D), m) Ny ({z}): Se&}eP (Cyln]\ {0}

Using (3.12), we find that C € (Cen)[Cy|[r]]. As a corollary, the intersection of all sets of the
family C is a nonempty subset of Y (we use compactness of TS (Y, 71)). Let y, be an element of
the above-mentioned intersection; then

y. € (VA (), m) Ng ™ ({z1).

e

As a corollary (see (2.2)), y« € (as)[E;Y;7; f;E] and z, = g(y.). Then
% € g ((as)[B; Y s [ €)).
Since the choice of z, was arbitrary, the inclusion
(as)[E; Z; o390 f3 €] C g*((as)[B; Y57 £ €])
is established. Recall that opposite inclusion follows from Proposition 8. 0

Theorem 1. For every nonempty compact TS (Y, 1)), nonempty Ti-space (Z, 1), f € YE,
g€ CaY,11,2Z,13), and € € P'(P(E)), the equality (3.11) is true.
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The corresponding proof is carried out by the immediate combination of (2.3), (2.4), and
Proposition 9.

In connection with Theorem 1, it is useful to note that, for every nonempty sets Y and Z,
71 € (top)[Y], o € (top)[Z], f € YE, g€ Ca(Y,71,Z,75), and A € P(FE)

cl((g o f)(A), ) = g' (cl(f'(A), 7))

Now, we recall the property noted in [9, Proposition 5.2.1]. Moreover, we can consider this
property as a simple corollary of Theorem 1. Namely, if (Y, 7) is a nonempty compact TS,
(Z,73) is a nonempty Ty-space, f € Y and g € C(Y, 7, Z, 1), then (3.11) is true. Indeed, in
the case at hand, g € Cy(Y, 71, Z, 1») automatically (see [6, 3.1.12]). Of course, in the above-
mentioned case, (Y, 7, f, g) is a compactifier. It is useful to compare Theorem 1 and Proposition 8.

Proposition 10. Let (Y, 7)) and (Z,7;) be two nonempty Ty-space, g € FO[E;Y;7], h €
C(Y,1,Z,19) and £ € P'(P(E)). Then

(as)[E; Z; 123 hoo g; €] = h' ((as)[E; Y3 113 g3 €)). (3.15)

Proof Weuse (2.9). Let (M, 0, u,\) be a compactifier: (M, 0) is a compact TS, M # (),
pwe ME, X\ e C(M,0O,Y,r), and g = X\ o u. Then, from the above-mentioned corollary of
Theorem 1, we obtain that

(as)[E; Y5715 9; €] = A ((a9) [ M 0; 15 E]). (3.16)
In addition, ho A € C(M, 0, Z, 15) and
(hoX)ou=ho(Aopu)=hog=holopu.

Then (M, 6, u, ho \) is a compactifier with respect to E, (Z,73), and hog : (M, 0) is a nonempty
compact space, 1 € M ho) e C(M,0,Z,7,),and hog = (ho\)ou. We use the above-
mentioned corollary of Theorem 1 again:

(as)[E; Z; 7a; ho g; €] = (ho \)'((as)[E; M; 0; s £]) = h' (A ((as)[E; M; 0; p; ).
Using (3.16), we obtain the required equality (3.15). U

§ 4. Example of the problem with an empty attraction set

In this brief section, we consider a variant of our problem (in asymptotic setting) for which
AS is the empty set. Namely, we consider the following simplest controlled differential equation:

i) =ut), =(0)=0, 0<t<I. (4.1)

In (4.1), u = u(-) is a nonnegative real-valued function on [0, 1]; moreover, for simplicity, we
suppose that u is piecewise constant, continuous to the right on [0, 1] and continuous to the left at
the point 1. By U we denote the set of all functions of the above-mentioned type. So, elements
of U are nonnegative relay functions on [0, 1] and only they. Under v € U, by x,, we denote the
trajectory of the system (4.1): x,, : [0,1] — R and

A

X, (t) 2 /0 tu(f) e vt € [0, 1]. 4.2)
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Introduce the following phase constraints: u € U must satisfy the conditions
1
x,(t) > n vt €]0,1]. (4.3)

Of course, controls v € U with the validity of above-mentioned phase constraints do not exist.
But, for 6 €]0, 1], there exists uy € U for which

x,(t) > > Vtelo1]. (4.4)

~ | =

We form constraints of asymptotic nature by conditions (4.4) under enumeration of 6 €0, 1]. In
addition, in this example, we suppose that &/ = U. Moreover, suppose that

Uy 2 {u € U|x,(t) >

~ | =

vt € [0,1]} VO €]0,1].

o . A . . .
Then, in this section, we define £ = {Uy : 0 €]0, 1]}. We obtain constraints of asymptotic nature.
We consider the setting for which realization of trajectories and limits of trajectories is im-

portant. For brevity, suppose that 2 [0,1]. So, the space of results is R! equipped with the
topology @ (&) of pointwise convergence, where 7 is the usual | - |-topology of the real line R.
Of course, TS (R!, ®!(7r)) is Tychonoff power of (R, 7r) with index set /. In addition, x,, € Rf
for u € E. We suppose that the mapping

f: E —R!

is defined by the rule: f(u) 2 x, Yu € E. We consider the set (as)[E; RT; @ (g); £; €] which is
a subset of R”.

We show that (as)[E R @ (1); £;E] = 0. Indeed, let (as)[E;RY; @1 (1g); £;E] # 0. We
choose an element x° € (as)[E RY; ®I(7'R) f; £]. So, in particular x° € R!. By (2.1), for a net
(D,C,g)in E =1,

®'(m) o
(EC(E—ass)[D;C;g]) & ((D,E,fog) — x).
In addition, D is a nonempty set, C€ (DIR)[D], and g € EP. We note that x,(t) > 0 Vu €
E Vt € I. Therefore, f(u)(t) > 0 Vu € E Vt € I. As a corollary, x°(t) > 0 V¢ € I. Now, we fix
€]0,1]. Then,
A t*
S — I
2+tm%ﬁ)aQ]

Recall that U,, € £ is defined. As a corollary, U,, € (E — ass)[D;C; g]. Using (1.5), we choose
d € D for which V6 € D

by

(dE9) = (9(9) € Up,).

Let 6, € D and d C §,. Then, g(o.

.) € Uy,. In particular, ¢(0,) € U. In addition, x,s.)(t) >
Vt € [t.,1]. In particular, X,5.)(t.) > 7

By definition of £, we obtain
2 0/ p*
Xg(6.) (1) 2 o +x(17).
By (4.2) x45,)(t+) < Xg(5.)(t*) (indeed, g(d,) is a nonnegative function). Therefore,

Xg(s,) (1) = — + x°(t").
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Since the choice of §, was arbitrary, it is established that V6 € D
* 2 0/ %
(d E0) = (x40 (") = o +x°(t7)).
But by the choice of (D, C, g) we find (in particular) that, for some deD

(Fog)(0)(t) ()] < =

under § € D with the property d C & (indeed, 2 €]0, o[ and the set

>

2

{h e R A(t") =x"(7)] < =}

is an open neighborhood of x"). Using the definition of directed set, we choose 4 € D such that
dC dand d C 4. Then,

* 2 *
X4 () > = +x°(t%).

On the other hand, the following inequality holds:

(F 0 g)(B)(1") () < =

~

Since (f o ¢)(0)(t*) = £(g(d))(t*) = x 45 ("), we obtain the obvious contradiction. As a result,
the required property (as)[F; R @!(g); f;E] = 0 is established. So, under compatibility of all
weakened constraints, we obtain the case of empty attraction set.

§ 5. Conclusion

In this article, some properties of AS have been considered. In particular, these AS can arise
as a result of the weakening of standard constraints in control problems. But it is possible that
the corresponding AS is the empty set (in the previous section, such example was considered)
although, for every concrete weakening of constraints, the compatibility condition takes place.
In this connection, we have investigated conditions for which AS is a nonempty set. Of course,
these conditions are connected with the compactness property for solution space of the corre-
sponding generalized problem. In this connection, the question about the compactifier existence
is important. We note Rfs. [10-12] in which some concrete versions of attainability problems
with constraint of asymptotic nature were considered.

Funding. Research was funded by the Russian Foundation for Basic Research, project number
19-01-00573.
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YIK 517.9
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B 3amauax ympaBieHHs TOCTPOCHUE W UCCIIENOBaHNE 00IacTel TOCTIKIUMOCTH M X aHAJIOTOB OY€HBb BaXK-
HO. DTa cTaThs aJpecoBaHa 3aja4yaM O JOCTHKUMOCTU B TOMOJOTMYECKHX MPOCTpaHCTBax. VcHonb3yroTcs
OTrpaHMYEHUSI ACUMIITOTUYECKON MPUPOABI, OIpelesieMble B BUJE HEIYCThIX CEMENCTB MHOXeCTB. Penie-
HUE COOTBETCTBYIOLIEH 3a7jauil O TOCTH>KUMOCTH ONPEAEIISETCS KAK MHOXKECTBO NPUTSDKEHUS. TOYKH 3TOrO
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