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Introduction

The goal of this paper is to study the asymptotic behaviour of critical circle maps with a single
critical point having an odd type. These maps have been a subject of intensive study since the
early 1980’s as one of the two main examples of universality in transition to chaos [1-4].

An important one-parameter family of examples of critical circle maps are the Arnold’s maps
defined by

Az)=x+t— %sin%m mod 1, =z € S
For every t € [0,1) the map f; is a critical map with critical point O of cubic type.

Following to the work of Ostlund and etc [2] we define a set of real-analytic commuting
pairs that corresponds to a set of real-analytic critical circle homeomorphisms of the third order.
Consider the set X, of pairs (£, 7) of real-analytic, strictly increasing on real line and satisfying
the following conditions [2]:

0 <£(0) <1,¢(0) =n(0) + 1;

(c1)
(c2) €(n(0)) = n(&(0)) > 0;

(c3) €(0) =n'(0) =¢£"(0) =n"(0) =0, but £”(0) and ""(0) are non zero;
(ca)

(€0n)™(0) = (n0&)"(0).

Conditions (c;) and (c2) permit us to associate a homeomorphism f = f¢,, on the unit circle
with each (£,n) € X,.. Define f = £ on [1(0),0] and f = n on [0,£(0)] and associate the unit
interval [7(0),£(0)] with the circle by identifying end points. A rotation number p = p(fe,) can
be defined for f¢, in the usual way (see, for instance, [5]).

We denote by A, (p) the subset X, of pairs (£,7) for which the rotation number p(fe,) =

=p= ‘[2 , 1.e. it is equal to the golden mean.
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Next we define the renormalization group transformation R: X..(p) — X..(p) (see [2]):

R(&,m) = (an(a™z), an(é(a™ x)),

where a := ag ,, = [7(0) — n(£(0))]~*. Conditions (¢1), (c2) imply that « < —1. The renormal-
ization group transformation R has a single hyperbolic fixed point (&y, 70) in the subspace X..(p)
(see [2,6,7].)

Notice that & (z), no(z) are real analytic functions of z® and the constant ag = ag, ,, ~
~ —1,2886 (see [2,6]). Denote by f., := fe, n, the circle map associated with (£, o).

Yoccoz in [8] generalized Denjoy’s classical result and proved that a critical circle homeo-
morphism with an irrational rotation number is topologically conjugate to an irrational rotation.

Graczyk and Swiatek in [9] proved that if f is C? circle homeomorphism with finitely many
critical points of polynomial type and an irrational rotation number, then the conjugating map ¢
is a singular function on S', i.e. ¢/(z) = 0 a.e. on S'. Consequently, the unique probability
invariant measure ji; of critical circle homeomorphisms f is singular w.r.t. Lebesque measure
on St

The problem of smoothness of the conjugacy between two critical maps with identical ir-
rational rotation number arises naturally. This is called the rigidity problem for critical circle
homeomorphisms. For the critical circle maps the rigidity problem is developed by de Faria, de
Melo, Yampolsky, Khanin and Teplinsky, Guarino among others.

Next we formulate the last fundamental result obtained by P. Guarino, M. Martens and
W. de Melo in [10].

Theorem 1 (see [10]). Let f, and f, be two analytic C*-circle homeomorphisms with the same
irrational rotation number and with a unique critical point of the same odd type. Then they are
Cl-smoothly conjugate to each other. The conjugacy is C1*¢, ¢ > 0, for Lebesgue almost every
rotation number.

Denote by Cr(p) the set of all circle homeomorphisms, which are C'-conjugated to f.,. and
defined on the standard circle S' = R/Z ~ [0,1). It is well known (see [5]) that any two
topological conjugated homeomorphisms have the same rotation number. Therefore, the rotation
numbers of homeomorphisms of Cr(p) are the same and equal to 5.

Let f be an orientation preserving a homeomorphism of the circle S = R!'/Z! ~ [0, 1) with
an irrational rotation number p = py. Let u = iy be the unique invariant probability measure
of f. Fix a point z € S' and consider the interval J.(z) = [z,2 + €] C S'. Consider the first
hitting time of any z € [0, 1) to the interval J.(z):

NO(z) =inf{i > 1: fi(z) € 3.(2)}.

The problem consists of finding conditions under which the hitting time, after rescaling by
some suitable constant depending on J.(z), converges in law, as 1(J.(z)) tends to zero. Since the
expectation of the first hitting time is of the order 1/u(J-(z)), it is natural to rescale the hitting
time by this factor.

Next define the rescaled hitting time as

ED () = u(3:(2)) NV (). (0.1)

We are interested in the convergence of the distribution function of the random variable EY (x),
1. e. in the convergence of the distribution function

F(t)=p(xe s EM(z)<t), VteR
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as ¢ — 0, for every ¢ belonging to the continuity points of the limit function.

Coelho and de Faria in [11], Coelho in [12] investigated the problem of convergence of
random variables Eél)(t) for linear irrational rotations f,(z) = x + p mod 1. It is known that
for linear irrational rotation f, the Lebesgue measure / is the unique invariant measure. In [11],
F,(t) was studied when [z, ¢,] is n-th renormalization interval for map f. It is shown that for
Lebesgue almost every rotation number p, the rescaled hitting times B () := p([z., cn])N,(LI)(-)
do not converge in law as c¢,, tends to zero, and all possible limit laws under a subsequence of
{¢n,n =1,2,...} are obtained.

Fix 0 € (0,1). Let g,, n > 1, be the denominator of n-th convergent of continued fraction of
an irrational p (for more details see Section 2). For every n > 1 we define the points ¢, () by:

pl[wo, cn(0)]) = 6 - pu(lo, f*" (0)])-

Consider the hitting times N W

n,0’

n > 1, to the intervals [z, c,(6)) and rescaled hitting times
Eq(llz(x) = p([zo, cn(9))N£71(3 (x). There are two natural measures on the circle: the invariant prob-

ability measure ;o and the Lebesgue measure /. We define the distribution functions of Eilz(x) :

@szu@eynmngﬂ,teRﬁ
Dy, (1) = E(x c St Eﬁlz(x) < t), t € R

Z. Coelho in [12] investigated all the possible limit distributions for F},,(¢) under a subse-
quence ¢, — 0. It is shown that for every convergent subsequence Fy,, (), m = 1,2,..., the
limit distribution Fy(t) is piecewise linear on [0,1]: Fyp(t) = 0, ¢t < 0, and Fy(t) = 1, ¢ > 1.
Notice that the results are valid for all circle diffeomorphisms which are C*-conjugate to a rigid
irrational rotation f,(x) := x + pmod 1 (see [13,14]). They are also valid if one replaces the
invariant measure u by the Lebesgue measure.

We should mention that asymptotic time distributions have been obtained in a number of
contexts, when studying hitting and return times of neighborhoods of generic points in the natural
scale of the measure of the neighbourhoods (see equation (0.1)). For finite state Markov chains
and Anosov diffeomorphisms [15], Axiom A diffeomorphisms [16], piecewise expanding maps
of the interval [17] are all exponential of parameter one.

In this paper we investigate the rescaled hitting times for critical circle maps f € Cr(p). We
formulate the main result of our work.

Theorem 2. Let p = \/52*1 and let f € Cr(p) be a critical circle map. Consider for 6 € (0,1)

the sequence of distribution functions {®,¢(t)} " | with respect to the Lebesgue measure on the

circle corresponding to the first rescaled hitting times Efllz(x) to the interval [z, c,(0)]. Then

1) for all t € R! there exists a finite limit

n—o0
where ®,(t) =0, if t <0, and O,(t) =1, if t > 1;

2) the limit function ®y(t) is a strictly increasing on [0, 1] and continuous distribution function
on R

3) Dy(t) is singular on [0, 1], i. e. q)z,it) = 0 a. e. with respect to the Lebesgue measure { on the
circle.
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§ 1. The thermodynamic formalism for critical circle maps of Cr(p)

We consider the critical circle homeomorphism f € Cr(p) with one critical point =g := z,

and the golden mean rotation number p = @ = [1,1,...,1,...]. For n > 1, we write
pn/qn = [1,1,...,1] the convergent of p, their denominators ¢, satisfy the recursive rela-

tion ¢,41 = ¢n + ¢,—1 with initial conditions ¢o = 1, ¢ = 1. The forward orbit O;f (xg) =
= {x; = f{(x0),i =0,1,2,...} of a critical point defines a sequence of natural partitions of the
circle (see [5]). Indeed, denote by I\ := I{™ () the closed interval in S! with the endpoints
zo and x,, = f9(x0). In the clockwise orientation of the circle, the point z,, lies to the left
of o for odd n, and to the right for even n. If I = fi(1™), i > 1, denote the iterates of
the interval Ié”) under f, it is well known, that the set P,, := P, (x() of intervals with mutually
disjoint interiors, defined as

Po=1{1", 0<i< g} U{I"Y, 0<j < g0}

determines a partition P, of the circle for any n. The partition P, is called the n-th dynamical
partition of S! determined by the point 2y and the map f. Note that, under the transition from P,
to P11, the intervals I J("H), 0 <j < gqn, of rank n + 1 are preserved, whereas the intervals ]Z-("),
0 <4 < @p41, with rank n are partitioned into two new intervals:
(n) _ 7(n+2) (n+1)
IV =1, Uy,
One has the following lemma.
Lemma 1 (see [19]). Let k > 0. Suppose 1™ € P, (xo), I € P,_i(x0), n > k, and
I ¢ 1=k Then

1]

< —k —3n ~ |7(n)
o) = Const|ag| ™", const|ag| 77" < [TWV).

Here and throughout on | - | denotes the length of an interval. The last estimates can be proved
similarly to the assertion for Feigenbaum map [18]. The last estimates imply that the orbit of
a critical point z, € S! is dense in S'. This together with monotonicity of f implies that the
homeomorphism f is topologically conjugate to the linear rotation f,(z) = x + p mod 1.

The sequence of dynamical partitions P,, allows us to introduce a symbolic dynamics for the
map f. For this, take an arbitrary point # € S' \ O where O} denotes the forward orbit of
the critical point zo of f. For n > 0, put ap41 := apq1(x) = aifz € IJ(-nH)(xo), 0< 7 < qn.

However, if x € 1 j("), 0 < j < @p41, it follows from the construction of the partition P, via P,

that in the case p(f) = w = % we have either =z € ]Z,(”“), 0 < i< gusg, OF T € 1Y

i+qn
0 <% < @p41- In the first case we put a,,.1 = 0 and in the second one a,1 = 1. By this way we

get a one-to-one correspondence
: ST\ O7 < {(ag,ar,...,an,...,a, € {a,0,1} such that
1 =0 <= a,=a, n>1}:=X,.
Notice that every interval 7 of the dynamical partition P, corresponds to the unique finite
word (ag, as,...,a,) of length n + 1. In particular, for n odd, the words (a,0,a,0,...,a,0)

and (0,a,0,a,...,0,a) correspond to the intervals Ié”) and I(()”H), respectively. Next, we define
another space of one-sided infinite words with the same alphabet A = {a,0, 1}.

Y, :={a=(a,a9,...,an,...), a, € A, such that a,;1 =0 < a, =a, n > 1}.
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Recall that o is the parameter of the scaling transformation of the corresponding pair &g, 1,
i.e., ag = [n0(0) — &, ap &~ —1,2886. .. (see [2,3]). Since xy is a critical point of the map f,
we can consider the neighborhood of the point z,: V(zy) := IW (21) U I3 (7).

We formulate the theorem on thermodynamical formalism for the critical circle maps
from Cr(p).

Theorem 3 (see [19]). For f € Cr(p), there is a unique, continuous (in the Tikhonov topology)
function U,,.: Y, — (—00,0) with the following properties.

(1) Leta,beY,, me Z,,and a; = b; for all 1 < i < m. Then
’UCT‘<Q) - Ucr(b)' S 03 : ‘a0|—m’
where the constant C3 > 0 does not depend on a, b and m.

2) Let IV, I8 € P, I c I ¢ V(wy), 1 < r < n, and o(I7) = (by, by, ..., by),
(I = (by, ba, ..., b,). Then

110 = (14 (by, b, ..., b)) ] exp {Z Uer (b, ..., b1, by, ... ,bl,z(bl))},

where |1)(by, ba, ..., b,)| < Const - |ag|™", and

(a,0,a,0,...,a,0,...), ifb =0,
Y(b1) = :
0,a,0,a,...,0,a,...), ifby=a,l.

Notice that the potential U,, is uniquely determined by the orbit of a critical point. The last
assertion of the Theorem 3 implies that the length of the interval (™ € P, can be estimated as

11|
exp {Z Um«(bs, bsfl, e ,bl,’_}/(bl))}
s=1

const < < Const. (1.1)

Following the statistical mechanics terminology we call the function U, := U, (a1, as, ..., an,...)
the potential corresponding to the critical maps f € Cr(w) [20]. The first assertion of the The-
orem 3 shows that the potential U,..(ay, as,...,a,,...) depends exponentially weakly on distant
variables.

Fix an integer k£ > 0. Define the (n — k)-th renormalization interval of the critical point z by

Vack = [ Zq, ) = 1" UL,

We now consider the dynamical partitions P,,_ and P,, n > k, of the critical point x,. We
consider an arbitrary interval J™ = (y™ (™) n > k, lying, either in the interval 1" or
18" Notice that if z, y € fi(I{"™), 0 < i < go_y, then in their symbolic representations
first n — k letters coincide.

Let the infinite words

(b1(0),02(0), ..., bp_p(0),eM @ @ )

and
(bl(O), bQ(O), e ,bn,k(()),’y(l),’y@), e ,")/(p), .. .),
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correspond to the endpoints 3™ and z(™ of the interval .J(™), respectively. Then due to f*(J™) C
C i), 0 < i < gy, the words

(b1(2), b (1), . . . bpp (i), W e® . @)

and
(b1(3), Do (4), . .., bpp (i), YD, 4D, AP )
correspond to the endpoints f¢(y™) and f?(2(™)), respectively.
We set

g= (6(1),6(2) €(p), ) v = (7(1) (2)7 R

FAT™) = T (b1(4), b2 (4), . . ., b1 (i); €, 7)-

Let the interval J™ be g,-small, i.e., the intervals J™ | f(J™), ..., f&=1(J™) are mutually
disjoint (except their endpoints). We recall that Nél_)k (x) is the first hitting time function of the

g e ey

point x to the interval V,,_;. The function Néa)k(x) is a step function taking constant value on
each interval 1("~*) of the partition P,,_.
For each 5 > 0 we define the following sum:

<1> N
1 n kil

Sn—k(B,€, 7) Z f1(T")) Z [T (b1 (2),02(4), - -, boi(8);6,7) 1.
Definition 1. Let & > 0. The sequence of sums {5, (5,£,7),n > k + 1} is called the
sequence of ¢, ,-sums of the map [ associated with infinite symbols ¢ and 7.
We now formulate the theorem proved in [19] which will be useful in the proof of Theorem 2.
Theorem 4 (see [19]). For each k > 0, 8 > 0, £ and v, there exists a finite limit

Tim S, _k(8,2,7) = (B, £,7).

The following theorem gives the lower and upper bounds for g,_-sums S, _(3,g,7) and
their limit (53, €, 7).

Theorem 5. For each n > k + 1, the following estimates
hold, where the constant Cy > 1 doesn't depend on n, k, € and 7.

P r 0 o f. First we prove the statement of the Theorem 5 in the case when J("™ is an interval of the
dynamical partition P,,. We consider the homeomorphism f, ,,, of the circle [10(0), {(0)), which
corresponds to the pair of functions (£y(z),no(x)). We recall that ({o(x),n0(z)) is a fixed point
of the renormalization group transformation R. We denote by 7,, the n-th dynamical partition
of fe,.n and its intervals by A. We have

Tn = {A}, 0 <0 < guyr; AT 0 <5 < g}

By definition, the homeomorphism f € Cr(p) is C'-conjugate to f¢,,,, i.¢., there exists a
diffeomorphism ¢ € C*(S') such that ¢ o f = f¢,,, © ¢. Hence, the intervals [" € P and
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A"™ = 9(I"™) € T, are comparable. Therefore we can prove the statement of the lemma for the
homeomorphism f¢, ,,. We set J™ := A®™ ¢ 7, To be definite, suppose A™ C Ar=F+1)

c Ay
First, we estimate the following sum
Sn—k(ﬁ) = Z |A(b1,b2,...,bn_k+1,a,0,...,a,0)\ﬂ,
b1,b2,..,bn k41
where the sum ranges over all admissible by, b, ..., b, g1

We rewrite the lengths of intervals in the last sum using the potential U,.. Note that the
thermodynamic formalism for f¢,,, was constructed for intervals lying in the neighborhood of

x1: Vi(z) = A(()l)(:vl) U A(()Z) (x1). It follows from the definition of symbolic dynamics that

A = A (q,1,0,by,bs, ... byg1,e® . e@ M) it AP < AP (a),

g e ooy

A" = A"(1,0,a, a4, a5, . . ., Gn_p_1,e®, ..., @ D) if AP U AéQ) (21).

Using Lemma 1, the sum S, _4(f3,£,7) can be written in the form

n—k—4

k—
n k 67 ) Z |O(0|_ { Z |A(a71a07b4ab57"-7bn—k—1)5(k)7'"a€(2)75(1))| +

s=0 ba,bs,. b —p—1

+ Z |A(CL,1,0,(I4,CL5,...7an_k_1,€(k)7...,6(2),5(1)”},

04,05,...,0n —k—1

(1.2)
where the constant oy ~ —1,28 [2]. Theorem 3 implies that
A(xhx% s al‘n—k—s—lyg(k)a s 75(2)78(1)> = |A(ZE1,I’2, SR 7xn—k—s—1)| X
X (1 + 7/’1(53171'2» s 7xn—k‘—s—17€(k)a s 78(2)’ 6(1)) X
k—1 (1.3)
exp{z Ucr(g(k_l)a ce ’E(k)’ Tp—k—s—1y - - - 71‘1,1(1'1))},
1=0
where |¢;] < const - |ag| " TF Y. Let A(ay, 20, .., 2p_js_1,e®, ..., e® W) C Vi, Using

the estimates (1.1), we obtain:

1
Cy - exp{z Ug(e® D e® g g on,. .. ,xl,f_y(:cl))} <JAE®, .. e@ M) <

=0

03 : exp{
l

Using the last estimates, (1.2) and (1.3), we find that

Sn—k(5a§a Z)
AED, ey

E
—_

Ucr(g(k_l)a s 7€(k)7 Tp—k—s—15-- - ,1'1,1(113'1))}.

Il
o

Cy < < Cs, (1.4)

Now we prove the statement of Theorem 5 in the case where J™ is ¢,-small but not an
interval of dynamical partition P, (z). We consider the dynamical partition P, ,,(x¢), m > 1.
Denote by wi,ws, ..., wim) the intervals of the partition P,,;.,(2), m > 1, whose union cov-
ers J. Because J(™ is a ¢,-small interval, it follows from the dynamical partition structure that
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[(m) < const - g,+1. The last two statements of Theorem 3 imply that for each w € P, 1., (0),
we have
const - di™ < |w| < Const - 5™,

where the constants 0 < d; < dy < 1 don’t depend on n and m. Hence, for sufficiently large m,

l(m)
U Wg - Vn—k‘

s=1

It is clear that o)
FIM cl fws), i>o.
s=1

We set Nfll_)k := Tn_r(I™). Using the second inequality of Lemma 1, we can show that

l(m)
1< [FI)Y 1 (wi) <1+ const -dy, 0<i< N —1.
j=0

The last inequalities imply that

N1 m) ND 1
I < Z | (w))] / Z |FI(TM)| 5 <1+ const - dJ.
Jj=0 J

=1 =0
The last relations together with (1.4) imply the assertion of Theorem 5 for the interval J". U

§ 2. Hitting times of circle maps

We consider the linear rotation f,(z) = x + pmod 1, z € [0,1), to the irrational angle
p € (0,1). Let A C R! be a measurable subset with /(A) > 0. Define the first return time
R4i: A— Nas
Ra(x) =inf{i > 1: fi(x) € A} forall z € A.

For t € R! we define by
[l = min [t —n|
nez

the distance to the nearest integer. It is known that the first return time R4 of an irrational
rotation f,(z) has at most three values if A is an interval (see [13]).

Proposition 1 (see [13]). Let f, be an irrational rotation and b € (0, ||p||) be a fixed number.
Let n = ny, > 0 be an integer such that ||qn+1p|| < b < ||qup| and K = K, an integer, which
satisfies

K =max{k = 0: kllgn1p]l + [[gn2pll < b}

Ifn > 0 is odd, then

Gn+1, r € [0,b— [|gnt1pl]),
Riop(®) = Gniz — (K = Dgni1, 2 € b~ gni1pll, Kllgnripll + lgnr2oll),
Gnt2 — Kqn1, T e [K||Qn+1p|| + ||Qn+2p||, b)-

If n > 0 is even, then

Gn2 — Kqny1, z € [0, b — K|lgni1pll — llgns2pll),
R[O,b)(33) = Gre — (K = 1)gny1, @ € [b— Kl|gny1pll — llgns2oll; [|gns1p]),
dn+1, VIS [HQVLJrlpuab)



Sh. A. Ayupov, A. A. Zhalilov 373

Remark 1. Note that the value Ry (x) at the middle interval is the sum of two other values.
Remark 2. 0 < K < k;,; — 1 forall: > 0.

Let f be a circle homeomorphism with the golden mean rotation number « and with a unique
probability invariant measure p := ;. Take an arbitrary point 2o € S*.
Take an arbitrary point ¢; € [f9 (zy), 1). There exists a constant 6 € (0, 1] such that

1o, c1)) = 0 p([f (o), 1]) := 0 - (") 2.1)
For every n > 1 we define c,, = ¢,(6) € I (z0) as
(L, (0)) = 0 - (15" (o)), 22)

where the interval I, (zo) has endpoints zy and c¢,. It is easy to check that ¢, lies between
fr+1(zg) and fo(x) for all n > 1.
Consider the first return time function:

R., () =min{j > 1: f/(z) € L., }.

The Remark 1 implies that the golden mean rotation number K defined in Proposition 1
equals to zero, i.e., K := K. = 0 for all n > 2. Applying the Proposition 1 we obtain the
following useful fact.

Proposition 2. Let [ be a circle homeomorphism with the golden mean rotation number o and

xg € S'. Assume the constant § € (0,1) and ¢, € Ié")(xo), n > 1, are determined by (2.1)
and (2.2), respectively.

(D If n € Nis odd, then
Gnt+2, T € [CqunH (:CO))v

ch <I> = Gn+3, T € [an+2 (130), fqn+1 (Cn)>>
Gnt+1, T € [fiqn-'—l (Cn),l’o).

(IT) If n € N is even, then

G2, T € [T, [T*2(cp)),
ch (Zlf) = Gn+3, T € [fianrz (Cn)a fqn+1 (ZEQ)),
Gn+1, T € [fan (‘%0)7 Cn)'

To be definite, we consider the case when n is even. The case of odd n can be considered
similarly. Introduce the following notations:

AGY = [wo, 2 (en), G = [F70 02 (en), £ o)), BEY = [0 (o) )
The collection of intervals
EnlTo, cn) = {ASY, F(AS), .., oz (AT U LGS, F(CS), ., fe(CE) Y U
u{B{™, f(BM), ..., fo+r(B)}

constitutes the partition of the circle S'. We denote it by &, (o, ¢,) and call the n-th generalized
dynamical partition associated with the points z( and c,.
Using the properties of dynamical partitions, one can show the following proposition.
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Proposition 3. The location of intervals of the generalized dynamical partition &, (x¢,cy) in
intervals of dynamical partition P(xy) is following (see Fig 4.1, 4.2):

1)

fi(A(()n) U C’én) U Bén)) - I(”), 0<i<gn1—1;

(2

fi(A(()n) U C(gn)) = I‘(nﬂ)a nt1 <0 < @y — 1

)

n n+2
F1(BSY) = [0, Cntgnes) C IS,

FCE) = £ (en 24,)) € £ (I5Y), Gugr S < oy — 1,
[ (AGY) = 24,00, 00) © 1",
Recall that, the first hitting time function in S! is
NW(z) =min{j > 1: fi(z) € L.}, zeS.
Proposition 4. Hitting time function is given by

mQH+1_i7 l](xefl(B[()n))7 1 SZ SQnJrlu
Ném)(x) = mdgp+2 — j7 lf‘x € f](A((]n))7 1 S j S qn+2,
mdn+3 — kv #I’ € fk(C(()'@)) 1 S k S gn+3-
P r o o f. Note that the collection of intervals

Agn)a 0<i< An+2, B_gn)a 0 S] < Qn+1, Clgn)a 0< k< Gn+3;

is a partition of the circle. This implies the required assertion of Proposition. 0
Now we rescale the hitting time function Nél)(x), 1.e., we divide it by the largest value and
denote by Efll)(x), ie.,

qn+3

The last proposition implies that Nél)(x) gets values from 1 to ¢,3. Obviously, the rescaled
function E (x) is a random variable taking values in (0, 1]. We denote by ®,, 4(¢) the distribution

function of Ey(Ll)(x) w.r. t. Lebesque measure on S*.
We formulate the following theorem.

Theorem 6. The distribution function of the rescaled hitting time function Efll)(x) has the
following form:

i) if t < 1/quys, then @, (t) = 0;
11) ifm/QnJrS § t § (m + 1)/Qn+37 1 S m § An+1, then

Gn+1—1 Gn+2—1 Gn+3—1

o) = > 1BU+ >0 1AV I+ Y 1a;

7::qn+177n j:q”+27m k=¢h+3—m
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i) if'm/gns <t < (m+1)/qni3s Guir < M < Guyo, then

gn+1—1 Gn+2—1 Gn+3—1
Coot)= > BM+ > 1A%+ Y o
i=0 J=qny2—m k=g¢ni3—m

V) ifm/gnis <t < (m+1)/qni3, Gniz <M < Guya, then

Q’n+l_1 Qn+2_1 Qn+3_1
O ot)= > 1B+ Y 1A%+ Y o)
i=0 J=0 k=qny3—m

V) if t > 1, then @, 4(t) = 1, where |L§n)| is Lebesque measure of LY.

Proof. Since all elements of the n-th dynamical partition P,, fully cover the unit circle, any
point z € S belongs to either I or ];IH for 0 <i < ¢u41 and 0 < j < @,. Using Proposition 3,

we have that z € S! belongs either to AE”), 0 < i < Qpyo, OF B]("), 0 <j < gnq1, OF C,ﬁ”’,

0<k<qus Ifm/qg3 <t<(m+1)/¢u3and 1 < m < g,.1, then the following equality
holds

((z e st EO() =1t) = B+ A" +|c].
For gny1 < m < gnyo,
((xe st ED@) =1) = A" +|c)].
And for g0 < m < g,43, we have
((xes: EN(x)=1t) =|CM),
Using Proposition 4 we get the assertions in ii), iii), iv). Therefore, since ®,,4(t) is a step

function, it is clear that ¢, o(t) = 0if ¢t <0, and @, 4(t) = 1 if ¢ > 1. Theorem 6 is proved. [
Next we introduce the following distribution function:

0, ift <0,
l
SO, i lgty <t < (14 Daplys 1 <1< guin,
k=0
l_Qn+1 l
Toot) =< 3 1A+ 3100, iflgy s <t < (U4 Dapls, tnpr <1< dnsos
1=0 k=0
Z*Qn+2 l*‘]n+1*1 !
STBI+ S A+ IO it larty << (4 Daptss G2 < U< gus,
§=0 i=0 k=0
1, ift > 1,

where | = ¢,13 —m — 1.
One has the following proposition.

Proposition 5. For all n > 1 the following relation holds:

(Dmg(t) = 1—\Ifn79(1—t), t € RL.
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P ro o f. In view of Theorem 6 and structure of dynamical partitions, we present ®,, 4(¢) in a
convinient form. Let mq, {5 <t < (m+ 1)g, 13, ¢uia < m < gy43. We have

qn+1—1 qn+2—1 Gn+3—1

Duolt) = D 1B+ D AT 3 167
i=0 J=0 k=qn+3—m
Hence
nt1-1 Int2—1 qnt3—1
gL =1) =1 = Prp(t) =1 - BOI+ Y AP+ Y el =

=0 7=0 k=gni3—m
qn+3—m—1

= i)

k=0

On the other hand
mq;ig <t< (m + 1)%;137

1—(m+1)g s <1—t<1-—mgq,},
Using the notation m = ¢,+3 — [ — 1, we have
1= (gnis =1 =1+ 1)g 45 1= < 1= (guys — L = D)ayls;

g1 <1—t<(I+1)qls 1<1<qny1

From the last inequality we get
!
:Z|Clin)|a if lq <t<(l+1)q;i3, 1 <1< gntr.

If mqr:-il-?) St< (m + 1)q7:—|1—3 and n+1 <m< An+2, then

Qn+1 1 Gnt2—1 Qni3—1
U,p(l—t)=1—a { + > AP+ > yc,gn>y}:

J=Gn+2—m k=qn4+3—m

dn+2—MmM qn+4+3—m

= AM ST o).

7=0 k=0

Since, g, {5 <1—1t < (I+1)g, s,

- dn+1

Z |An>|+Z|C , i lgty <t <+ 1)gts, @i <1< guio.

If mg, s <t < (m+1)g, {5, 1 <m < gui1, then

lgits <t < (I+ Dgyls

Hence,
- dn+1 - —Qqn+42

Z 1AM + Z |B”)|+Z\C |, if s < 1< Guys.

Proposition 5 is completely proved. U
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§ 3. The proof of Theorem 2

Fix k£ > 1. Consider the sequence of dynamical partitions {P,_(zo), n > k + 1}. By the
structure of a dynamical partition, the renormalized neighborhood V,,_1(20) = [2q, .., T4, ,] Of
the critical point x( consists of g, intervals of rank n — 1 and ¢;, intervals of rank n. Consider
the Poincare first return function 7,y : V,,_x(20) — Vi—k(z0):

(x) fqn7k+1(a’;)’ ifz e [an an—k)’
Th— = :
F f(Infk (./,U): lf S [an,k+1 ) xo)

The collection of the following intervals:

k(A(()n)), WZ_k(A(()"))’ o 7.‘_(1k+2*1(Aén));

» Pm—k

A(()n) , T

n—

n n n -1 n
B, m,_o(BS), 72 (B, .. w5 (BEY);

n n n 3—1 n
C8, 0 (C5V), w2 (O, . mss (),

gives the generalized dynamic partition of the renormalized neighborhood V;,_(z¢) associated
with the points z and ¢,,. We denote it by 1), (o, ¢,,). It is clear that the partition 7, ,, (2o, ¢;,)
consists of all intervals of the partition &, (o, ¢,,) contained in the interval V,,_, (). To be specific

2
n—
2

suppose that n — k is even, define the ¢,-small interval Dgi)k = [y™, (M) ¢ Nn—k.n(Z0, ¢n) and
let Dgi)k C [7g, 4.1 T0). Then o(y™) := (a,0,a,0,...,a,¢) and p(2") := (a,0,a,0,. .. ,0,7).
The endpoints of the intervals fi(D™) = [fi(y™), fi(z™)), 0 < i < gu_p — 1, have
symbolic representation in the form o(fi(y™)) = (b 6@ ... =% g) and o(fi(2™)) =
Z (B0, b® k) )
Next define the itinerary of the point € V"% as the sequence (bg”_k)(x), bgn_k)(x), e
M (2),..), where bgn_k) (x), 7 > 1, are defined as

. j— n—k+1
b(»n—k)(l’) — O, if Fi_i(%) & [(g + ),
J 1, ifa k() e 1"\ {0}
We set
n—~k n
bl( )= bl(C’[() )), 1 <1< qpys.

We denote by Nﬂk(x), i > 1, the i-th hitting time of the point z into interval V,,_, i.e.,

N(i)k(:v) =min{s >i—1: f*(z) € V,_x}.

n—

It is easy to check that for all x € C(()”) :

Ny(f—)k(@ = Z((l - bl(nik))ankfl + bl(nfk)qnfk), 1 < < Qrys. (3.1
=1

We denote by RS)_k(x) the i-th return of x into V,,_x(zo), i.e.,
RV (2) = N () - N P(2), i>1.

It is clear that
I(n—k-l—l)
0 )

n—k Qn-ty1, Ifx€ Ién_ ),
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We define for every k£ > 1, the sequence of partitions {tffz), 0 < i < gryspo2, of the segment
[0,1) as follows:

(4)

N
() = S0k << gyg and £ = 0. (3.2)
’ n+3

Obviously, for each n € N we have

0<tly <t <. <t =1,
0<tl) <t <. <t? =1,
0<t®) <™ <. < ) =1,

Using (3.1) and (3.2), we get the following estimates:

o

1 .
qn+3Qn < |tn a1 ,m" < qn+39n—k+1, 0<:< qk+3 — 1.

One has the following Proposition.

Proposition 6. Let k > 1 and let the sequence of the partitions {t
interval [0, 1) be defined by (3.2). Then

0 <i < qrystpe, of the

nz’

1) for each i, 0 < i < qyy3 — 1, the following finite limit exists:

lim tffz) = tl(k);
n—oo

2) the subset T = |y, {tF,0 <i < qiy3} is dense on [0, 1).

Proof Itis easy to see that the difference equations ¢, 1 = ¢, + ¢n—1, o = q1 = 1 have
solutions

-2 — —
P+ p__ I—p_
q 7 1P +(_)_2 1P nz (3.3)

with p = Y21 Let 1 < i < gi13. Using (3.1)~(3.3) we obtain

i

k
tgL) = Qn+3N( D n = Gn+3 Z((l - bl(k))ankfl + b[(k)qnfk> =
1=1

_ Z k) —k+2 + b k)—k+1 + O(—2n k))

Consequently,
k)\— _ k .
7}1_{2075(7) Z((l _ bl( )) k-+2 + b k—H) tz( )’ 1<i< Qhot3-
=1
Now we prove the second assertion of the Proposition 6. The last relation implies that
et < [t — 1P < ept, 0<i < gy,

where the positive constants ¢; and ¢ don’t depend on k and 4. Since p € (0, 1), we obtain that
the subset 7 is dense on [0, 1]. O
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Proposition 7. For each i, 0 < 1 < qi.3, there exists the finite limit

lim W, (1)) = U, (1),

n—oo
P roof We rewrite \1/,%9(155’“)) in the following form:
o) = (Wao(t) = Wup(t1) + Vao (). (3:4)

First, we estimate the difference \I/nﬁg(tgk)) -V, (t(k ). The relation (3.2) implies that

|t§k) — tflk2| <const-p" %, n>k+ 1.

Using the definition of the distribution function v (¢t o(t) for sufficiently large n, we have

n7

\\Pn,g(tgk)) \Ifng( )] < max |I \ < const - \" (3.5)

0<i<gn

where A € (0,1). The last term of (3.4) we rewrite in the following form:

Vo (t0) = S (W0 (t)) — w0t ). (3.6)

=1

Using definition of the distribution function W, 4, each difference in the right-hand side
of (3.6) can be rewritten as

k k
U, (t8)) — W0t ) =

)

(n) .

Zo ’ON(Z ()4 1, if 1 <1 < gy,

=

R (AF)-1 RV (cirh—1
(n) (n) . <
— Z |AN(l 1)(14(”)) | + Z |CN”(11:’€1)(C(()7L))+J»|7 lf Qk—i—l =~ l < qk+27
j=0 7=0
R (By")-1 Ry (Af)—1 R (ciM)-1
Z | N(z 1)(B(n))+ |+ Z | NT(LI:E)(Aén))+j| + Z | N(z 1)(C(n)) |
1 gryo <1< Grgs.

Each sum in the last relation is the thermodynamic sum of rank k associated with ¢,-small
intervals D™ € 0, 4 (70, ¢,), D™ C V,,_1(20). Theorem 6 implies that each of such sums has
a finite limit as n — oo. Futher, collecting (3.4)—(3.6), we obtain, that

lim ,0(t") = D lim (To(t,7) = Caolty]-1) = To(t")

n—oo
forall 1 <17 < qgus. O
It remains to prove the continuity of Wy(t) on [0, 1]. Since Wy(t) is increasing function on the

dense subset 7, it can be extended to the interval [0,1). It is obvious, that Uy(¢) = 0, if ¢ < 0,
and Wy(t) = 1, if t > 1. We clearly deduce that

lim W, 4(t) = Uy(?),

n—oo
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for all t € R™.
Now we prove continuity of the limit distribution function Wy(¢) on [0, 1]. By the triangle
inequality, we have

[Wo(th) = Wo(t™)] < 1Wo(th) = Wup ()] + 190(t7) W)+ )
[ Wnp(t5h) — g 0]

Now we estimate the last sum in (3.7). We consider only the case 0 < ¢ < g11. Other cases
are similar. We have:

0,0 (t]) — 0 ()

n,i—1

R (05 -1 cv
j=0

o NN
< > Tz?n(£>,)+j <const- X', (38)
J J

here we used that the ¢,-small interval C](:()l_l) is the part of the interval [ j(”_k) of rank
n—k

n—k.

Take an arbitrary small € > 0. We choose k = k(g) > 0 such that const- \" < £. However the
sequence {V, ¢(t)} converges to Wy(t), for sufficiently large n the sum of first two terms in the
right-hand side of the inequality (3.7) is less than £ for all 0 <4 < g4 3. From (3.5), we have that
for sufficiently large n the sum of next two terms is less than . We collect all above estimates
and obtain that the right-hand side of (3.8) is less than § forall 0 < ¢ < g4 3. Putd = a*~1. Since
the function Wy(¢) is increasing, then using (3.7) and (3.8), we obtain that |Uy(t1) — Wy(t2)| < €,
if [ta — 1| < 4.

The last statement of Theorem 2 can be proved as a similar statement in [21].

(C§™)+i
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III. A. Aronos, A. A. Kanunoe
ACHMITOTHYECKOE pacinpeneieHe BpeMeHU MONAJaHus JJIs1 KPUTHYECKHX 0TOOpaKeHUii HA OKPYK-

HOCTH
Kniouesvie cnosa: romeoMopdu3M Kpyra, KpUTHUECKasi TOUKA, YUCIO BPALICHUs, BpeMs MONalaHus, Tep-
MOIMHAMUYECKHUHA (OPMaIH3M.

YIK 517.9
DOI: 10.35634/vm210302

Xopomuio M3BECTHO, YTO TPeoOpa3oBaHUE PEHOPMIPYIIbI R UMEET CAMHCTBEHHYIO HENOIBUKHYIO TOY-
Ky fer B TIPOCTpAHCTBE KpuTHUeCKHX C°-roMeoMOP(HU3MOB OKDYKHOCTH C OJHOH KyOMUeCKOH KpuTHUe-
CKOM TOYKOHM ¢, M YHMCIIOM BPALICHHS, PABHBIM 30JI0TOMY CEUEHHIO p := @ O6o3naunm uepes Cr(p)
MHOECTBO BCEX KPUTHYECKHX OToOpaskeHHii okpyxkHocTH, Cl-conpsikenHHbIx K fer. [lycts f € Cr(p)
M [ := [t — CAMHCTBEHHAs BEPOATHOCTHAs MHBapuaHTHas Mepa juii f. 3adpuxcupyem 6 € (0,1). dns
Kaxaoro n > 1 ompenenum ¢, := ¢, (6) Takoe, ato p([zer, cn)) = 0 - p([zer, f4 (2er)]), THE g1, — BpeMs
TIEPBOTO BO3BPATA JIMHEHHOTO BPALICHHS f5. MBI HCCIeIyeM 3aKOH CXOAMMOCTH MePeMAaCIITa0HPOBAHHOTO
TOYEYHOTO TIPOIECCa BPEMEHH MOMaianus. Mbl OKa3bIBaEM, YTO MPEIEIbHOE PACTIPEICTICHIE CHHIYIIIPHO
OTHOCHTENBHO Mepsbl JleOera.
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